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Abstract

CYTOSOLIC CALCIUM MACHINERY IS ONE OF THE PRINCIPAL SIGNALLING MECHANISMS BY WHICH ENDOTHELIAL CELLS

(ECS) RESPOND TO EXTERNAL STIMULI DURING SEVERAL BIOLOGICAL PROCESSES, INCLUDING VASCULAR PROGRESSION

IN BOTH PHYSIOLOGICAL AND PATHOLOGICAL CONDITIONS. LOW CONCENTRATIONS OF ANGIOGENIC FACTORS(SUCH

AS VEGF) ACTIVATE IN FACT COMPLEX PATHWAYS INVOLVING , AMONG OTHERS, SECOND MESSENGERS ARACHIDONIC

ACID (AA) AND NITRIC OXIDE (NO), WHICH, IN TURN, CONTROL THE ACTIVITY OF PLASMAMEMBRANE CALCIUM CHAN-

NELS. THE SUBSEQUENT INCREASE IN THE INTRACELLULAR LEVEL OF THE ION REGULATES FUNDAMENTAL BIOPHYSICAL

PROPERTIES OFECS (SUCH AS ELASTICITY, INTRINSIC MOTILITY, AND CHEMICAL STRENGTH), ENHANCING THEIR MIGRA-

TORY CAPACITY. PREVIOUSLY, A NUMBER OF CONTINUOUS MODELS HAVE REPRESENTED CYTOSOLIC CALCIUM DYNAMICS,

WHILE EC MIGRATION IN ANGIOGENESIS HAS BEEN SEPARATELY APPROACHED WITH DISCRETE, LATTICE-BASED TECH-

NIQUES. THESE TWO COMPONENTS ARE HERE INTEGRATED AND INTERFACED TO PROVIDE A MULTISCALE AND HYBRID

CELLULAR POTTS MODEL (CPM), WHERE THE PHENOMENOLOGY OF A MOTILEEC IS REALISTICALLY MEDIATED BY ITS

CALCIUM -DEPENDENT SUBCELLULAR EVENTS. THE MODEL, BASED ON A REALISTIC 3-D CELL MORPHOLOGY WITH A

NUCLEAR AND A CYTOSOLIC REGION, IS SET WITH KNOWN BIOCHEMICAL AND ELECTROPHYSIOLOGICAL DATA. IN PAR-

TICULAR , THE RESULTING SIMULATIONS ARE ABLE TO REPRODUCE AND DESCRIBE THE POLARIZATION PROCESS, TYPICAL

OF STIMULATED VASCULAR CELLS, IN VARIOUS EXPERIMENTAL CONDITIONS. MOREOVER, BY ANALYZING THE MUTUAL

INTERACTIONS BETWEEN MULTILEVEL BIOCHEMICAL AND BIOMECHANICAL ASPECTS, OUR STUDY INVESTIGATES WAYS

TO INHIBIT CELL MIGRATION : SUCH STRATEGIES HAVE IN FACT THE POTENTIAL TO RESULT IN PHARMACOLOGICAL INTER-

VENTIONS USEFUL TO DISRUPT MALIGNANT VASCULAR PROGRESSION.
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1 Introduction

Finely tuned spatio-temporal calcium events are a highly conserved and ubiquitous mode for the control of biochem-

istry and physiology in almost all eukaryotic cells [12, 15, 20]. Endothelial cells (ECs) are no exception, and intracel-

lular calcium serves as a positive or negative regulatory signal for a wide range of cell functions, including survival,

proliferation, motility, apoptosis and differentiation [11, 13, 68]. A broad number of calcium-dependent enzymes are

also associated with the progression through the cell cycle (the exit from quiescence in early G1 phase, the G1/S tran-

sition and other checkpoints during S and M phases [5, 43, 72]), and mediate the activation of several nuclear factors

involved in the DNA division machinery, for example cdk and cyclins [22, 25, 87].

Under resting conditions, different control mechanisms maintain the concentration of free cytosolic calcium very

low, nearly 10−7 M, with respect to the extracellular environment and to intracellular compartments (primarily the

endoplasmic reticulum, ER [1, 86, 94]). In particular, the ion is extruded from the cytosol by calcium pumps, which

are present in both plasma and ER membranes (respectively PMCA and SERCAs) and directly consume ATP energy,

and by Na-Ca exchangers, which are located only in the plasmamembrane and use the energy of Na+ electrochemical

gradients [35, 40, 100]. On the other hand, calcium enters into the cytosol through permeable channels sited within

the different membranes and activated by intracellular messengers [10, 54, 77].

The correct Ca2+ concentration is thus strictly regulated by these active and passive fluxes. Alterations of this

fine balance can be triggered only by specific extracellular agonists, and are typical chemical signals transducing

information during several biological processes, including new vascular progression in both physiological (such as

vascularization of ovary and uterus during the menstrual cycle, of mammary glands during lactation and of granulation

tissue after wound healing) and pathological (for example chronic inflammatory diseases, vasculopathies, degenerative

disorders, tissue injury occurring in ischemia or tumor progression) conditions [17, 74, 80]. In particular, vascular

endothelial growth factors, VEGFs, which act as a positive chemotactic guidance for ECs (as widely demonstrated in

literature [16, 18, 103]), concomitantly mediate several calcium-dependent pathways. As characterized in [28, 45, 67,

68, 73, 98], VEGF molecules, binding to their surface tyrosine kinase receptors, initiate in fact a series of intracellular

cascades, which results in the indirect production of arachidonic acid (AA) and nitric oxide (NO). Both these second

messengers bind to sites on plasmamembrane, opening cation channels and thus allowing the influx of extracellular

calcium into the cytosol, see Fig. 2. The process, also called non-capacitive (or non-store-operated) calcium entry

(NCCE or NSOCE), causes a localized and peripheral restricted accumulation of the ion [98], and regulates important

biophysical properties of ECs, such as their intrinsic motility, elasticity and chemotactic strength, ultimately enhancing

their migratory capacity, which is fundamental in the initial phases of the vascular progression [9, 27, 29].
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Figure 1:Simplified schematic representation of VEGF-induced calcium-dependent events during chemotactic migration of a vas-
cular endothelial cell. VEGF molecules, binding to tyrosine kinase receptors, activate a series of intracellular signalling inducing
the recruitment of enzymes phospholipases A2 (PLA2) and nitric oxide synthase (eNOS), and the subsequent production of arachi-
donic acid (AA) and nitric oxide (NO). Both these second messengers mediate calcium influxes from the extracellular environment
through plasmamembrane channels. Increases in cytosolic calcium level influence the migratory capacity of the EC. The dashed
arrows stand for indirect reactions, which are bundled in the model. Such scheme is based on [68, 67, 98]

The aim of this work is to systematically characterize the interactions between these multilevel biochemical and

biomechanical mechanisms, and investigate their effects on the phenomenology of a vascular cell. Individually, each

component has been previously considered: a number of continuous microscopic models have in fact characterized

calcium dynamics in different cell types [26, 42, 49, 93, 94], while several discrete cell-level CPMs have treated the

motion of vascular endothelial cells during angiogenesis [6, 56] or vasculogenesis [3, 60, 61, 62]. We here interface and

integrate such different approaches to assemble a unique multiscale model: it simulates a simple and reliable motility

assay with an endothelial cell placed on one side of a three-dimensional chamber and stimulated by an exogenous

VEGF source. In particular, at the lowest molecular level, we use an adapted version of the work of L. Munaron [75],

which, basing on experimental evidences (mainly patch clamp and single cell fluorescence microscopy provided by

his group), has been able to accurately reproduce the basic properties of proangiogenic calcium signals in a static EC.

Next, at the cellular level, we introduce a Cellular Potts Model (CPM), developed for instance in [4, 33, 34, 36, 57], to

describe the 3-D EC morphology, strictly based on experimental images and characterized by a realistic differentiation

between the nucleus and the cytosolic region, and its phenomenology. As a key ingredient of our hybrid framework,

the subcellular calcium biochemistry is coordinated to realistically deliver the mesoscopic cell properties, described
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Figure 2:Hierarchy of scales and environments, and corresponding biological mechanisms and modeling approaches. Information
flows from microscopic intracellular biochemical processes to the mesoscopic cell-level phenomenology.

by typical Potts parameters. The resulting model, utilizing the advantage of both discrete and continuous techniques,

is thus able to span all the different biological spatio-temporal scales involved, which range from 10−8 m and 10−9 s

for the intracellular molecular processes to 10−6 m and hours for the cell-level phenomenology, which directly impact

each other.

The model simulations reproduce the varying morphologies of a motile vascular cell, while characterizing the

VEGF-induced calcium events, in a good agreement with experimental measurements. We further find close quan-

titative relations between such intracellular Ca2+ dynamics and the cell migratory parameters (such as velocity and

mean displacement) under different physiopathological conditions. In particular, we focus on the model counterparts

of biomedical approaches which, interfering with calcium machinery, are able to slow down cell migration: such

strategies, in fact, may represent useful pharmacological treatments that have the potential to disrupt malignant neo-

vascularization.
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2 Mathematical Model

The continuous approach describing the VEGF evolution and its downstream signalling, and the discrete Cellular Potts

model phenomenologically reproducing the migration of the endothelial cell are integrated to produce a hybrid system.

In particular, the microscopic dynamics of intracellular calcium alter mesoscopic biophysical properties of the ECs,

such as its motility, compressibility and chemotactic strength, ultimately affecting its behavior. Thus all levels of the

model are explicitly integrated and feed back over the whole simulation.

2.1 Extended Cellular Potts Model

The Cellular Potts Model is a grid-based stochastic approach, which describes the evolution of the simulated system in

terms of effective energies and constraints. To represent biological systems, the CPM uses a numerical lattice, where

each sitex is identified by an integer index, a degeneratespinσ(x) ∈ N. Typically, each cell is an undifferentiated

domain of contiguous voxels with the same spin, whereas cell membranes are the borders between voxels with different

spins. In this work, we use a more realistic extension of the CPM (see the Discussion for a detailed comment): the

vascular endothelial cell is differentiated in a nuclear and a cytosolic region, which are classical CPM domains. In

particular, the sitesx belonging to the nucleus have spinσ(x) = 1, those of the cytosolσ(x) = 2. The plasma and

the nuclear envelopes are defined as the borders between the cytosolic compartment and, respectively, the medium

and the nuclear region, see Fig. 3A. Initially the EC is an hemisphere of 30µm in length and width and of 15µm

in height, while the nucleus, whose location and geometry is estimated from experimental images, is a sphere of 10

µm of diameter, as depicted in Fig. 3B: these measures agree with the most usual morphologies observed in classical

cultures for resting ECs in the presence of adequate nutrients and the absence of external forces [27, 98]. We further

define a special generalized cellσ = 0 representing the extracellular medium. It is assumed to be static, passive and

homogenously distributed throughout the three-dimensional simulation domain, forming no large-scale structures and

thus without volume or surface constraints, as done in [60, 61].

Instead of directly representing the forces that act on the simulated environment, the CPM aggregates them into a

functional, the HamiltonianH. It contains a variable number of terms, such as cell attributes (e.g., volume, surface) and

effective energies (e.g., cell response to chemotactic stimulus). The cell motion comes from the overall minimization

of H through stochastic fluctuations. The core algorithm is Metropolis method for Monte Carlo dynamics [36, 64].

Procedurally, a lattice site (source site, xsource) is selected at random and assigns its spin state (σ(xsource)) to one

of its unlike neighbors (target site, xtarget), which has also been randomly selected. Such a proposed change in the

lattice configuration is calledspin copy. The Hamiltonian of the system is computed before and after the proposed
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Figure 3:(A) A typical CPM grid and representation of a compartmentalized cell. Lattice sites of the nuclear region (σ(x) = 1)
are in yellow, lattice sites of the cytosol in grey (σ(x) = 2). The extracellular medium is labeled withσ(x) = 0. (B) Representation
of the initial 3-D morphology of the simulated vascular EC, which is 30µm in length and width and about 15µm in height. (B)

update: ifH is reduced as the result of the copy (e.g. the copy is energetically favourable), the change is accepted,

else the Boltzmann probability

P (∆H > 0)(t) = e−∆H/Tσ(xsource)(t) (2.1)

is used, whereTσ(xsource) is an effective Boltzmann temperature of the moving sitexsource. A total of n proposed

updates, wheren is the number of sites of the lattice, constitutes a Monte Carlo Step (MCS), which is the basic iteration

and the unit of time used in the model. Ifσ(xsource) = 1, Tσ(xsource) = T1 is a low constant positive value and mimics

the passive motion of the cell nucleus, which is dragged by the surrounding cytosolic region (we remainder the reader

to Sec. 3 for a more complete discussion). Instead, ifσ(xsource) = 2, Tσ(xsource) gives a measure of the frequency of

the biased extensions and retractions of cell plasmamembrane, which result from the non-equilibrium state between

outward and inward forces. Such an intrinsic motility, the primary driving force of cell non-directional movements,

is mediated by the overall intracellular calcium level in a dose dependent manner, as provided in [29], where wound

healing assays are performed on several types of vascular cells stimulated by different agonists (such as AA and NO

themselves). We therefore use a Michaelis-Menten law:

Tσ(xsource):σ(xsource)=2(t) = T0

[
1 + C̃a(t)

1 + hC̃a(t)

]
, (2.2)

where, here and in the following,the rate of intracellular calcium accumulation C̃a(t) = [Ca(t)/C0] − 1 is a
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positive value, sinceCa(t) =
∑

x:σ(x)∈{1,2} Ca(x, t) corresponds to the total concentration of the ion at timet, and

C0 =
∑

x:σ(x)∈{1,2} Ca0 is its total basal level (the level below which the cell dies, for its estimation see Table III and

the Appendix). HenceT0 corresponds to the basal motility of the cell (i.e., in resting conditions at the basal calcium

levelCa0), andT0/h to the asymptotic value (i.e., for saturating concentrations of the ion).

The hamiltonian of the system, whose minimization, as seen, drives the cell phenomenology is:

H = Hshape + Hadhesion + Hchemical + Hpersitence. (2.3)

Hshape takes into account of the cell shape growth and deformation, which are described with an elastic-like term:

Hshape(t) = Hvolume(t)+Hsurface(t) = µ1(v1(t)−V1)2+µ2(v2(t)−V2)2+λ1(s1(t)−S1)2+λ2(t)(s2(t)−S2)2,

(2.4)

wherevi andsi, with i ∈ {1, 2}, are, respectively, the actual volume and surface of the two cell compartments, andVi

andSi are their initial measures.µi andλi are penalty coefficients controlling, respectively, the size and the elasticity

of the subunits’ membranes (i.e., deviation ofvi andsi from Vi andSi increase the functionalH). Since we do

not include in the model the addition of any types of nutrient (such as oxygen), the cell volume fluctuations are kept

negligible, within a few percent, by high values forµ1 andµ2, as done in similar theoretical works [60]. Moreover,

because of cell nuclei do not strongly deform, we set high a high value also forλ1. λ2 is instead a measure of the ease

with which the EC changes its shape due to cytoskeletal remodeling (i.e., it is a sort of inverse of its compressibility).

Following [9], where has been provided the fact that actin-myosin interactions and reorganizations are facilitated by

the presence of free calcium ions, we set

λ2(t) = λ2,0 exp
(
−kC̃a(t)

)
, (2.5)

whereλ2,0 is the intrinsic cell resistance to compression at the basal calcium concentrationCa0. In particular, for

saturating levels of Ca2+, λ2 → 0, and the cell can undergo a dramatic change in its morphology in response to the

external stimulus.

Hadhesion is the energy contribution due the generalized adhesion between the nuclear and the cytosolic compart-

ments, which is a general extension of the Steimberg’s differential adhesion hypothesis (DAH) [36, 95, 96]:

Hadhesion(t) =
∑
x,x′

J1,2(1− δσ(x),σ(x′)(t)), (2.6)
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wherex, x′ represent two neighboring lattice sites within the cell andδx,y = {1, x = y; 0, x 6= y} is the Kronecher

delta. We prevent the cell to split into disconnected patches by assigning a large negative energy penaltyJ1,2.

Since vascular EC have been demonstrated to migrates along gradients of VEGF concentration [32, 92], we add a

linear-type chemotaxis term to the effective energy [88]:

∆Hchemotaxis = µch(xsource, t) [Q(xtarget, t)−Q(xsource, t)] . (2.7)

xsource andxtarget are, respectively, the source and the final lattice sites randomly selected during a trial update in

a MCS: obviously,xsource is a cell membrane site whilextarget is a medium site. The parameterµch represents the

local chemotactic sensitivity of the cell and evolves according to a Michaelis-Menten function:

µch(xsource, t) = µch,0

[
1 + Ca(xsource, t)
1 + jCa(xsource, t)

]
, (2.8)

whereµch,0 is a basal chemotactic sensitivity. With this relation, we model the experimental evidence that the local

redistribution of VEGF receptors from the Golgi apparatus to the plasmamembrane, and their following activation, is

caused by a local elevation of cytosolic calcium ions [65].Q is a measure of the local extracellular VEGF concentration

sensed by the moving membrane site:

Q(x, V ) =
∑

x′
V (x′, t), (2.9)

wherex ∈ {xsource, xtarget}, andx′ are all the matrix first-nearest neighbors ofx. Such a spatial approximation is in

agreement with experimental results given in [32], where a direct chemotactic guidance by VEGF has been provided

to require the existence of precisely shaped extracellular gradients in the close proximity of the cell surfaces. The local

characterization of cell chemical response is a key feature of the model with respect to similar published works, where

the chemotactic force is homogeneous within the cells’ membranes [60, 61].

Besides the directional chemotactic migration, real vascular cells are seen to have a persistent motion dictated by

their longer axes. It is a consequence of their polarization, i.e. their differentiation in a leading and a trailing surfaces.

This inertial, shape-dependent motion is modeled with a further energy term, which coherently is a running mean over

the cell past movements [4, 89]:

Hpersistence = µpers(t)||v(t)− v(t−∆t)||2, (2.10)

wherev(t) = xCM (t)−xCM (t−∆t)
∆t is the instantaneous velocity of the cell center of mass, asxCM (t) =

∑
x:σ(x)=1,2 x

v1(t)+v2(t)
,
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and∆t = 60 MCS.µpers controls the persistence time and is:

µpers(t) = µpers,0

[
L(t)
L0

− 1
]

, (2.11)

whereL is the current length of the longer axis of the cell, which is approximated with an ellipsoid, andL0 is its initial

value (the initial cell diameter). ObviouslyL ≥ L0, since we have assumed that the cell deforms but does not grow

during patterning. Eq. (2.11) is based on the experimental evidence provided in [41], where after analogous chemical

stimulations, elongated vascular cells have seen to have a longer persistence time than more rounded cells. This is

explained with the observation that cell polarization is a cytoskeleton-driven process: the more a cell is polarized (i.e.,

the longer is its main axes), the more its actin filaments are in fact oriented in such a direction, requiring a longer

time to reorient into a new direction, and thus to change the direction of motion of the whole cell. Coherently, from

(2.11), ifµpers = 0 the EC undergoes uncorrelated Brownian motion, while ifµpers is very large its motion is almost

ballistic.

TABLE I - PARAMETERS INVOLVED IN THE MODEL

PARAMETER DESCRIPTION MODEL VALUE REFERENCE

V1 volume of nuclear compartment 900 [µm3] [98]

S1 perimeter of nuclear compartment 314 [µm2] [98]

V2 area of cytosolic compartment 32000 [µm2] [98]

S2 perimeter of cytosolic compartment 1110 [µm2] [98]

T0 basal EC motility 3.5 fit to experiments in [81]

T1 generalized motility of the nucleus 0.25

h Michaelis-Menten coefficient for T 1/2

µ1 volume elasticity of nuclear compartment 20

µ2 volume elasticity of cytosolic compartment 20

λ1 surface elasticity of nuclear compartment 20

λ2,0 intrinsic plasma membrane elasticity 1.2

k Michaelis-Menten coefficient forλ2 1

J12 generalized nucleus-cytosol adhesion within the same cell -20

µch,0 basal chemotactic strength 0.2

j Michaelis-Menten coefficient forµch 1/2

µpers,0 basal inertia strength 0.8 fit to experiments in [81]

2.2 Modelling the VEGF-Mediated Calcium-Dependent Intracellular Events

The key biochemical processes incorporated in the model of the VEGF-induced calcium dynamics are as follows (see

Fig. 4 for a diagrammatic representation):

• the exogenous VEGF diffuses throughout the extracellular medium, where it decays in a finite time;
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• single molecules of morphogen reversibly combine with their tyrosine kinase receptors on cell surface, to form

receptor-ligand complexes. These complexes decompose into a free receptor (which is recycled back) and some

products, that initiate a sequence of reactions (i.e., the activation of enzymes PLA2 and eNOS) culminating in

the production in the sub-plasmamemrane regions of second messengers AA and NO [30, 45, 68, 98];

• AA and NO open the relative and independent calcium channels in the plasma membrane, leading to extracellu-

lar calcium entry into the cytosol. The rates of calcium influx are increasing and saturating functions of AA and

NO concentration, respectively [27, 28, 67, 71, 73, 98];

• NO release is further mediated by AA itself within cell cytosol [67, 68, 105];

• calcium enhance the rates of cytosolic AA and NO biosynthesis, with a positive feedback mechanism [53, 67,

68];

• calcium ions, which are reversibly buffered to proteins such as calmodium or to mitochondria [8, 10, 46, 51],

are extruded from of the cell by plasmamembrane ATPase and Ca2+-Na+ exchangers [35, 40, 100].

Figure 4: Diagram of the key VEGF-induced intracellular Ca2+ processes included in the mathematical model. Cell surface
receptors activated by VEGF molecules stimulate the biosynthesis of AA and NO which, in turn, mediate calcium entry from the
extracellular environment into the cytosol. Cytosolic Ca2+ is reversibly buffered by proteins and extruded back from the cell.

EXTRACELLULAR VEGF EVOLUTION. The evolution of the exogenous VEGF constitutes the extracellular envi-

ronment the cell responds to with its surface tyrosine kinase receptors. The VEGF spatial profile satisfies the following

diffusion equation:
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∂V (x, t)
∂t

= DV∇2V (x, t)− λV V (x, t)−B(x, t, V (x, t)) + S, (2.12)

whereV (x, t) denotes the actual concentration of the peptide at medium sitex (i.e., σ(x) = 0). The coefficients of

diffusivity, DV > 0, and of degradation,λV , are assumed to be homogeneous throughout the extracellular environment

and derived from previous experimental determinations [92].S describes the production of VEGF at a constant rate

φV per unit of time by a discrete source, whose location and extension will be discussed in the next section.B is the

amount of VEGF molecules per unit of time that are locally sequestered by the cell. Following [6, 56], we assume that

receptor binding occurs very rapidly compared to the time-scale of cell migration, and that the local quantity of VEGF

molecules instantly bound by the vascular EC at timet is equal to the smallest between the actual available molecular

concentrationV and the actual maximal amount of VEGF that can be internalized by the cell surface receptors, which

is defined withβV (t) (whose estimation is described in details in the Appendix). Thus we set:

B(x, t, V (x, t)) = min{βV (t), vV (x, t)}, (2.13)

wherex belongs to the external surface of the cell PM (i.e.,σ(x) = 0 andσ(neighbor ofx) = 2).

TABLE II - PARAMETERS INVOLVED IN THE MODEL

PARAMETER DESCRIPTION MODEL VALUE REFERENCE

DV diffusion constant of VEGF 10 [µm2s−1] [92]

λV on-rate constant of VEGF degradation 1.8 · 10−4 [s−1] [92]

φV on-rate constant of VEGF secretion 0.78 [h−1] [90, 92]

v coefficient of the amount of bound VEGF per unit of time 1 [h−1]

INTRACELLULAR VEGF-INDUCED PATHWAYS. For the construction of a mathematical model of VEGF-mediated

intracellular events, we use a PDE-type approach based on the model of L. Munaron for the proangiogenic calcium

signals in a static EC [75]. However, with respect to that model, we here explicitly describe the VEGF-induced

production of second messengers AA and NO, as well as the calcium feedback mechanism for AA biosynthesis.

Moreover, we use slightly different flux distributions for both calcium entry and extrusion (see below for details).

The current levels of AA and NO at cell locationx (σ(x) ∈ {1, 2}) are controlled by standard reaction-diffusion

equations consisting in terms for their production, diffusion within the cytosol, and natural decay:

∂AA(x, t)
∂t

= DAA∇2AA(x, t)− λAAAA(x, t) +
kAAR(x, t)

KAA + R(x, t)
+

vCaCa(x, t)
cAA + Ca(x, t)

; (2.14)
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∂NO(x, t)
∂t

= DNO∇2NO(x, t)− λNONO(x, t) +
kNOR(x, t)

KNO + R(x, t)
+ vCaAA

Ca(x, t)
cNO + Ca(x, t)

AA(x, t)
aAA + AA(x, t)

.

(2.15)

The coefficients of diffusivity,DAA, DNO > 0, are assumed to be homogeneous within the cells. The degradation of

both the intracellular messengers (and thus the following production of, respectively, eicosanoids [44] and peroxyni-

trites [79]) is also considered constant, at ratesλAA, λNO > 0. The third terms in Eq. (2.14) and (2.15) describe the

VEGF-induced production rate of AA and NO at the cell sub membrane region, as

R(x, t) =
∑

x′
B(x′, t), (2.16)

whereB(x′, t) is defined as in (2.13) and, in particular, thex′s form the extracellular first-nearest neighborhood of the

cytosolic sitex (i.e., σ(x) = 2 andσ(x′) = 0). We apply a Michaelis-Menten law supposing that the intermediate

receptor-ligand complexes are in a pseudo-steady state. Note that in this single simplified reaction, we bundle multiple

signal transduction cascades, that are known intermediates in AA and NO generation, such as the activity of PLA2

and eNOS enzymes. The last term in Eq. (2.14) implements the calcium-dependent feedback mechanism in AA

biosynthesis, while the analogous term in Eq. (2.15) accounts for the double regulation of NO production (both AA-

and Ca2+-mediated). They are described by others saturating functions of the Michaelis-Menten type, work within

the entire cell cytosol and agree with electrophysiological measurements, see again [75].

The intracellular level of calcium at sitex (σ(x) ∈ {1, 2}), definedCa(x, t), is determined by a balance between

the influxes through either AA- and NO-activated PM channels, respectivelyFAA andFNO, extrusion of the ion from

the cytosol,Fout, and its buffering. It is thus controlled by the following reaction-diffusion equation:

∂Ca(x, t)
∂t

= Kbuff

[
DCa∇2Ca(x, t) + FAA(t) + FNO(t)− Fout(t)

]
. (2.17)

The coefficient of diffusion,DCa > 0, is assumed to be homogeneous throughout the cell (the diffusion of calcium

across the nuclear envelope is taken to occur through non selective pores, whose permeability is proportional to the

diffusion constant of the ion in the cytosol [21, 75]).Fout, the overall rate of calcium efflux from the cell at time

t, incorporates the extrusion of the ion both via PM ATP-ase and Ca2+-Na2+ exchangers, which is given in several

models as a sum of Hill functions [75, 100]. However, in order to avoid over-complications while remaining close

to the curves set in literature in the considered agonist concentration range, we here approximateFout as a single

Michaelis-Menten form:
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Fout(t) =
∑

∂x−membrane

Fout(∂x, t) =
∑

∂x−membrane

kCa

[
Ca(x, t)

Caout + Ca(x, t)

]
, (2.18)

where∂x is the external border of cell membrane sitex (as usual,σ(x) = 0 andσ(neighbor ofx) = 2), kCa is the

maximal rate of calcium extrusion andCaout the calcium concentration at which the rate of efflux is half maximal.

FAA andFNO, respectively the Ca2+ influx distributions from the extracellular environment through independent

and either AA- and NO-activated channels, are assumed to be saturably dependent on the relative second messenger

concentration:

FAA(t) =
∑

∂x−membrane

FAA(∂x, t) =
∑

∂x−membrane

FAA,max

[
AA(x, t)

qAA + AA(x, t)

]2

(2.19)

FNO(t) =
∑

∂x−membrane

FNO(∂x, t) =
∑

∂x−membrane

FNO,max

[
NO(x, t)

qNO + NO(x, t)

]2

, (2.20)

where∂x is defined as in Eq. (2.18). The quadratic exponent reflects the fact that two AA or NO molecules are

supposed to be bound to the respective Ca2+ channel in order to open it. There would be two additional fluxes that

influence the level of cytosolic calcium: the rate of its release from the ER and the rate of its resequestration back

in the endoplasmic reticulum [2, 86]. We can neglect both contributions, since the former is not stimulated by low

concentrations of AA and NO [27, 67, 98], and the latter is typically involved only in the recovery of calcium response

after agonist removal [66].

The scaling factorKbuff = Koff

Koff +KonbT
models the activity of intracellular endogenous buffers (proteins in-

cluding calmodulin and others, cytoskeleton, mitochondria), which have a significant impact on the overall calcium

dynamics, influencing its effective diffusion and contributing to decrease its level [8, 10, 46].bT is the total con-

centration of buffer sites (considered constant and experimentally estimated in different cell types),Kon is the rate

of calcium uptake,Koff the rate of its release. This approximation works under the assumption that the buffering

reactions take place on a faster timescale than the flux dynamics described above, and thus they can be considered in

a quasi-steady state. This is the case of immobile buffers, characterized by low affinity and fast kinetics [93, 94].

Finally, the extracellular level of calcium evolves according to:

∂Caext(x, t)
∂t

= DCa∇2Caext(x, t)− FAA(t)− FNO(t) + Fout(t). (2.21)

whereσ(x) = 0, and the fluxesFAA, FNO, andFout are characterized in Eqs. (2.18), (2.19), and (2.20).
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TABLE I - PARAMETERS INVOLVED IN THE MODEL

PARAMETER DESCRIPTION MODEL VALUE REFERENCE

DAA diffusion constant of AA 10 [µm2s−1] [75]

λAA on-rate constant of AA degradation 30 [s−1] [75]

kAA maximal rate of VEGF-dependent AA release 30 [µMs−1] fit to experiments in [75]

KAA Michaelis-Menten constant for VEGF-dependent AA release 1 [µM] fit to experiments in [75]

vCa maximal rate of Ca-dependent AA release 0.75 [µMs−1]

cAA Michaelis-Menten constant for Ca-dependent NO release 0.3 [µM]

DNO diffusion constant of NO 3300 [µm2s−1] [52, 75]

λNO on-rate constant of NO degradation 0.1 [s−1] [75]

kNO maximal rate of VEGF-dependent NO release 30 [µMs−1]

KNO Michaelis-Menten constant for VEGF-dependent NO release 1 [µM]

vCaAA maximal rate of NO release 1.5 [µMs−1] fit to experiments in [14, 67]

cNO dissociation constant between Ca and eNOS 0.3 [µM] [83]

aAA dissociation constant between AA and eNOS 0.2 [µM] [75]

Ca0 local intracellular basal calcium level 0.05 [µM] [10, 75]

Caext,0 extracellular calcium level 2000 [µM] [10, 75]

DCa diffusion constant of Ca 220 [µm2s−1] [26, 46, 75]

kCa maximal rate of calcium efflux 24.7 [µMs−1 ] fit to models in [75, 100]

Caout threshold concentration for calcium extrusion 0.32 [µM] fit to models in [75, 100]

FAA,max maximal rate of calcium influx through AA-activated channels 6 [s−1] fit to experiments in [67, 75]

FNO,max maximal rate of calcium influx through NO-activated channels 4.5 [s−1] fit to experiments in [67, 75]

qAA Michaelis-Menten constant for AA-activated channels 2 [µM] fit to experiments in [67, 75]

qNO Michaelis-Menten constant for NO-activated channels 5 [µM] fit to experiments in [67, 75]

Koff dissociation constant between endogenous buffers and Cac 300 [s−1] [8]

Kon on-rate constant of endogenous Cac buffering 100 [µM−1s−1] [8]

bT total endogenous buffer concentration 450 [µM] [26, 75]

14



M. SCIANNA A M ULTISCALE HYBRID MODEL FORPRO-ANGIOGENIC CALCIUM SIGNALS IN A VASCULAR ENDOTHELIAL CELL

3 Simulations and Results

Numerical simulations of the model framework are run with a modified and adapted version of the open-source Com-

pucell3D2 environment [34, 84]. We have in fact implemented tools for a computationally efficient integration of the

different biological scales spanned by our approach: in particular, subroutines and plug-ins are set to inherit, at each

time step, the biophysical properties of the EC from its microscopic biochemical state3.

The simulated domain consists in a 600× 200× 80 square lattice with periodic boundary conditions. One lattice

voxel is equivalent to 0.125µm3: thus the lattice represents a 300µm × 100 µm × 40 µm motility chamberwith

a volume of 1.2· 106 µm3. One Monte Carlo Step corresponds to10 s. The PDEs are numerically solved using

a finite-difference (FD) scheme on grids with the same spatial resolution of the CPM lattice, and with 10 diffusion

timesteps per MCS. Such timesteps are sufficiently small to guarantee numerical stability.

The hemispheric vascular EC, whose initial measures are given in Table I, is placed in the right side of the simula-

tion environment. The biological variables are initiated at their typical levels: in particular, there are no AA and NO

within the cell, and the free cytosolic calcium,Ca0, is assumed uniform, as well as the extracellular level of the ion,

Caext,0. All the parameters involved in the model are listed in Tables I, II, and III.

We run a first set of simulation incontrol conditions, i.e. without the application of external chemical stimuli. As

expected, no calcium events take place (Ca(t = 6 h)=Ca0), according to experimental observation made by Munaron

for his model in [75], and we do not observe any spontaneous change in the shape of the EC, which remains more or

less hemispheric and starts a slow isotropic motion, see Fig. 5. Such cell behavior is qualitatively consistent within

vitro experiments, where a block in VEGF signaling causes endothelial cells to keep a round shape [23] and to have a

substantially negligible autonomous motility [81]. In particular, this last consideration gives us confidence to compare

our model and with the experimental results therein also to quantitatively, in order to estimate the basal properties of

the cell (see the Appendix for a detailed explanation).

A point source of VEGF (S in Eq. (2.17)) is then applied inx=(600, 100, 0). Figure 6 (and Video S1) shows

time lapse images of both the phenomenological migration of the cell and the relative calcium events. As represented

in Fig. 6(A), the motile cell undergoes a gradual transition from the initial symmetric stationary state to a polarized

migratory state, characterized by clearly distinguishable leading and trailing edges. In particular, a long and thin

membrane-bound cytoplasmic pseudopodium emerges at the front of the cell, defining the direction of migration to-

ward the chemotactic source, as the elongated cell moves by constantly protruding at the leading edge, while retracting

2downloadable at http://www.compucell3d.org
3In the free-ware spirit of CompuCell3D, the interested readers may contact the author to get further clarifications on the model implementation

and, eventually, to get the relative subroutines and plug-ins
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Figure 5: Endothelial cell phenomenology and relative calcium events incontrol conditions(without external stimuli) at 30
min intervals untilt = 3 h. (A) Three-dimensional view of cell migration. Contour plot showing cell position and intracellular
calcium concentration in (B)z=1 µm plane and (C)y=50 µm plane. Calcium concentration has been pseudocolor-scaled so that
the maximum value is red. The simulated cell almost maintains its initial hemispheric morphology and undergoes an essentially
random motion. No calcium signals are observed.
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Figure 6:VEGF-induced chemotactic migration and cell polarization. (A) Representative three-dimensional views taken at 45 min
intervals untilt = 6 h. Red dot represents the VEGF source. The cell, after a short latency, rapidly polarizes establishing a leading
edge, a long and thin pseudopodium, which gives the direction of motion. (B) Cell directional velocity (i.e. toward the chemotactic
source)vx = (xCM (t + ∆t)− xCM (t−∆t))/2∆t, where thexCM is thex-coordinate of the cell center of mass and∆t = 10
min [81]. Mean over 10 simulations, error bars represent standard deviation. (C) For comparison purposes, model results in the
case of a monocompartmental endothelial cell (i.e., formed by a unique unit representing an undifferentiated cytoplasm). All the
other parameters are the same as the previous case. It is worth to notice that this approach is unable to reproduce cell polarization,
as the cell is only a deformed mass that moves toward the chemical source.
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at the rear. Such a phenomenology is coherent within vitro realizations performed in [23], where VEGF-stimulated

ECs are found to assume an extended, bipolar morphology. In the presented model, cell elongation results from the

interplay between the chemotactic-induced membrane extension at the leading front of the cell and the mechanical

properties given to its compartments, with the nucleus characterized by a constant stiffness and the cytoplasm by

variable calcium-dependent elasticity and motility. In particular, the exogenous stimulus causes the cell plasmamem-

brane to locally protrude in the direction of increasing VEGF gradients, with a speed of protrusion proportional to the

modulus of the local chemical strengthµch itself (for instance, in any CPM model the simulated objects experience

an implicit drag force from the lattice, and thus they have Aristotelian dynamics, refer to [4, 58] for more detailed

comments). Pushed by the leading front, the overall cytosolic region, whose elasticity and mobility increase due to

the concomitantly calcium accumulation, then deforms and moves forward, while pulling onto the nucleus with the

same force. The nucleus (which, as a CPM object, also follows Aristotelian dynamics) is instead basically stuck to

the underlying lattice, as a consequence of its rigidity: therefore it moves with a lower velocity than the surrounding

cytosol and lags behind, creating the characteristic polarized morphology of the EC. These mechanisms are a sim-

plified picture of the biological processes underlying cell movement (the relative literature is vast, however we refer

the reader to the comprehensive biochemical reviews [82, 85] and the classical books [1, 39]). In reality, the external

chemical stimulus, via surface receptors, triggers in fact the polymerization of the cell cytoskeleton, which results in

the constant abutting of the cell plasmamembrane in the direction of motion and in the coordinated development and

release of focal adhesions (FAs). During the motion of the overall cell, the nucleus is unable to have an autonomous

directional movement, as it only negligibility fluctuates in the cytoplasmic fluid. However, the nucleus is anchored

to intermediate actin filaments and microtubules, which are in turn linked to the extracellular matrix through the fo-

cal adhesion clusters: therefore, it is passively pulled by drag forces transmitted by the substrate via the cytoskeletal

components, see review [104] and the references therein. Such indirect mechanical interactions between the nucleus

and the matrix environment are implicitly reproduced by the model artifact of staking the nuclear compartment to the

underlying lattice with a finite rigidity, which is sufficiently high to results in a slow movement of the nucleus but

low enough to avoid the total block of its locomotion. Obviously, a more realistic model should explicitly include the

dynamics of the cell cytoskeleton and its signal transduction (this topic, often approached in the literature with multi-

phase models, see for example the book [19], could represent a fundamental improvement of CPM applications, since

it has received little though increasing attention). However, the assumption made does not strongly influence the final

outcomes of the model: the dynamics of the nucleus are in fact kept constant in all the proposed sets of simulations by

fixing the value of its stiffness,λ1, and of its mobility,T1: in this way, the migratory properties of the EC are mainly

determined by the other mechanisms involved (such as molecular processes), which instead vary in each case. The
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importance of the compartmentalized approach is also underlined by studying the phenomenology of the cell in the

case of a monocompartmental representation (i.e., the EC is formed by a single, undifferentiated cytoplasm, while all

the other model assumptions are not changed): as reproduced in Fig. 6(C), the polarization process does not emerge

and the cell is a deformed mass which moves in the direction of the chemical source (notice that also the top of the

cell unrealistically protrudes). For a quantitative characterization of cell motility, we define cell averagedirectional

displacementandvelocity(i.e., along thex-axes, in the direction of the chemical source), which facilitate the com-

parison between the analyzed experimental conditions. In particular, the cell directional displacement is simply the

x-coordinate of the cell center of mass,xCM , at a given time, while the directional velocity is the relative component

of its velocity (i.e.,vx = (xCM (t)− xCM (t−∆t))/∆t, where∆t = 60 MCS, and thus≈ 10 min, as in Eq. (2.10)).

After an initial stage, when the cell is still round and does not strongly sense the VEGF stimulus, the directional ve-

locity rapidly increases until it stabilizes at 42µm/h (when the EC is completely polarized), see Fig. 6(B). This agrees

with the range of speeds measured in [81] for real endothelial cells in embryonic mouse allantoides, i.e. (25µm/h ;

40 µm/h). In particular, the cell velocity has been therein evaluated relative to the motility of the surrounding envi-

ronment in which the cells reside: the observed lower values can be partly explained by the fact that the experiments

are performed in a more realistic, noisy environment, that reduces the persistence length of cell motion. Moreover, the

cell takes≈ 6 hours to reach the opposite side of the chamber. In this case, obviously,xCM (t = 6 h) = 300µm: this

value is used as a reference value.

Figure 7 illustrates the time course of the intracellular calcium signals in two perpendicular sections of the cell.

As reference sections we choose thez=2 vx (≈ 1 µm) plane, which includes the development of the pseudopodium,

and they=100 vx (≈ 50 µm) plane, the main transversal section of the cell. After a short latency (≈ 30 min),

surface receptor activation by VEGF stimulates the full activation of downstream cascade leading to the subsequent

production of second messengers AA and NO, which, in turn, start to induce calcium influx from the extracellular

environment through the relative channels. The resulting intracellular calcium events, initiating at the sub-plasma

membrane regions, rapidly propagate in every direction, to inhomogeneously fill the whole cell volume. The final

pattern of Ca2+ accumulation is strongly localized: higher concentrations (> 2 µM) occur in the leading front of the

polarized cell (i.e., at the tip of the pseudopodium), and decay within a distance of 15-20µm (< 1 µM). They are

undetectable in the peri-nuclear regions (< 0.5µM). Moreover, the rate of the final intracellular accumulation of the

ion is C̃a(t = 6 h) ≈ 3.6. These findings are in agreement with both experimental [98] and modeling [75] data on

the spatial propagation of calcium events in endothelial cells stimulated with angiogenic factors. If the external VEGF

stimulus is subsequently removed, imposingS = 0, the production of AA and NO ceases and they rapidly decay. The

cytosolic calcium, extruded by pumps and exchangers, then quickly returns to the baseline levelCa0 (not shown).
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Figure 7: VEGF-induced calcium events. Contour plots showing intracellular calcium concentration during cell motion in (A)
z=1 µm plane and (B)y=50 µm plane. Representative images taken at 45 min intervals untilt = 6 h as in Fig. 6(A). (C) Ca2+

concentration profile at the end of migration,t = 6 h, along cellx-cross-section ofz=1 µm plane from the trailing edge to the
leading edge of the polarized cell. Mean over 10 simulations, error bars represent standard deviation. Higher Ca2+ accumulation
(> 2 µM) is observed in the thin pseudopodium. Negligible calcium events are seen in the central-nuclear area (< 0.5µM).
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Figure 8:Partial inhibition of overall VEGF-induced calcium influxFTOT = FAA + FNO. (A) Three-dimensional view of cell
position att=6 h for eachFTOT -decrement. Red dot represents the VEGF source. Contour plots showing the final intracellular
calcium profile in (B)z=1 µm plane and (C)y=50 µm plane. Calcium concentration has been pseudocolor-scaled so that the
maximum value is red. (D) Evolution in time of cell directional velocityvx. The complete inhibition of calcium responses
(FTOT = 0) dramatically stops cell directional motility (xCM (t = 6h) = 20 µm andvx ≈ 3.3 µm/h). (E) Maximal Ca2+

concentration att = 6 h. Error bars show standard deviation over 10 simulations.
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To establish a direct qualitative and quantitative relation between intracellular calcium events and cell motion, in

Figure 8 we study the consequences of a gradual inhibition of the Ca2+ influx distributions. In particular, given that

FTOT = FAA + FNO is the total VEGF-induced calcium influx, each of its decrement is the model counterpart of a

treatment with an increasing concentration of carboxyamidotriazole (CAI) drug. CAI is in fact an anti-invasive and

anti-angiogenic agent, which alters calcium-mediated signal transduction in ECs by blocking agonist-activated calcium

entry in a dose-dependent manner [7, 47, 69]: in particular, it is currently under investigation as an orally administered

tumoristatic agent in Phase II and III clinical trials for different tumors, as explained in [48, 76]. Decrements inFTOT

result in marked decrements in the cell directional velocityvx, which are followed by the relative decrements in the

final cell displacement (xCM (t = 6 h) = 150µm for FTOT /2 andxCM (t = 6 h) = 70µm for FTOT /4), see Fig. 8.

Furthermore, an approximately complete inhibition of the mitogen-induced calcium responses,FTOT −→ 0, causes

the cell to remain in its unpolarized stationary state, dramatically stopping its directional locomotion, as forFTOT /8,

vx is almost a constant≈ 4 µm/h andxCM (t = 6 h) < 20µm. The cell behavior is explained by the fact that partial

inhibitions ofFTOT cause decrements in the intensity of calcium responses: in fact both the maximal peaks and the

overall accumulation of the ion decrease (i.e.,C̃a(t = 6 h)≈ 1.4 forFTOT /2, C̃a(t = 6 h)≈ 0.6 forFTOT /4, and

C̃a(t = 6 h)≈ 0.2 forFTOT /8), see Fig. 8(E). The consequence is a downregulation of the biophysical properties of

the EC, such as the intrinsic motility, elasticity and chemotactic strength, involved in its migratory capacity. However,

the interferences in the influx distributions do not affect the spatial propagation of the ion, as represented in Fig.

8(B-C).

Disruptions in the second messenger machinery are as well of high biological interest. In particular, we exclude

the production of arachidonic acid (similarly nitric oxide) by imposingkAA = vCa = 0 in Eq. (2.14) (similarly

kNO = vCaAA = 0 in Eq. (2.15)). It is the model counterpart of the activity of PLA2 (eNOS) inhibitor (such as

AACOCF3 or, respectively, L-NAME drugs, which are well studied anti-angiogenic compounds bothin vitro andin

vivo, see again the excellent medical review [76]). Both exclusions result in an incomplete transition of the EC toward

the motile phenotype, and in the consequent decrement of its directional velocity and final displacement (xCM (t = 6

h) = 110µm in the case of AA inhibition, andxCM (t = 6 h) = 180µm in the case of NO inhibition), as shown in

Fig. 9(A-D). The explanation is that the disruption in the biosynthesis of each of the two molecules extinguishes its

intracellular presence and, consequently, abolishes the relative calcium influx, as also provided by the experimental

system in [67]. Indeed, the final outcome of both proposed treatments is a downregulation of the VEGF-induced

calcium signals similar to those obtained from the direct block of the influxes of the ion (reproduced in Fig. 8) which,

as seen, have caused partial inhibitions of the cell migratory capacity. In particular, also with the exclusion of either

AA or NO production, the spatial propagation of calcium responses appears relatively unchanged w.r.t. the standard
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Figure 9:Modeling interference in the production of either arachidonic acid (kAA = vCa = 0) and nitric oxide (kNO = vCaAA =
0). (A) Three-dimensional view of cell position att=6 h for the two cases. Red dot represents the VEGF source. Contour plots
showing the final intracellular calcium profile in (B)z=1 µm plane and (C)y=50 µm plane. Calcium concentration has been
pseudocolor-scaled so that the maximum value is red. (D) Evolution in time of cell directional velocityvx. (E) Ca2+ concentration
profiles at the end of migration,t = 6 h, along cellx-cross-section of thez=1 µm plane from the trailing edge to the leading edge
of the polarized cell. As usually, higher Ca2+ accumulations is observed in the thin pseudopodium, even if the maximal amplitudes
are strongly decreased. Negligible calcium events are seen in the central-nuclear area (< 0.5µM). Mean over 10 simulations, error
bars represent standard deviation.
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parameter setting, while the peaks have a lower amplitude (i.e.,≈ 1.1 µM in the case of AA inhibition and≈ 1.6

µM in the case of NO inhibition) and the total intracellular amount a significative decrement as well (i.e.,C̃a(t = 6

h)≈ 1.2 in the case of AA inhibition and̃Ca(t = 6 h)≈ 1.6 in the case of NO inhibition), see Fig. 9(B-C-E). Taken

together the results in Figs. 8 and 9, we have the model confirmation of the efficacy of two families of anti-angiogenic

compounds, that target different calcium-dependent mechanisms involved in cell migration (i.e., either directly the

fluxes through PM channels or the dynamics of the second messengers).

So far, we have provided the fact that differently modulated calcium signals influence the final morphology of the

EC and its migratory properties. We now turn to the opposite by analyzing how a constrained cell shape affects cell

migration, and the relative calcium events. We thus perform simulations forcing the vascular cell to keep its initial

hemispheric morphology, with a high constant value ofλ2 = 50 in Eq. (2.4). This is the model counterpart of the

activity of phalloidin-like compounds, which block the calcium-dependent reorganization of actin cytoskeleton by

inhibiting actin-myosin interactions. As shown in Fig. 10 and in Video S2, the simulated endothelial cell, loosing

its capacity to differentiate and polarize, is characterized by a shortly persistent motion, with a predominant random

component, which results in a low directional velocityvx and a short final displacement, asxCM (t = 6 h) = 85µm.

These observations agrees well with the experimental results provided in [41], where more rounded and symmetric

ECs are seen to have an isotropic migration, and suggest a possible pharmacological way to reduce cell motility.

The constrained cell morphology affects also the pattern of calcium accumulation, see Fig. 10(E): the peaks remain

localized in the sub-plasma membrane region of leading front of the cell (and almost negligible,� 1 µM, within a

distance of 5-10µm from the cell surface), but they occur slightly later, and have a significantly lower amplitude (≈

1.6µM), as resulted also experimentally in [98] and theoretically in [75, 38]. Consistently, the overall accumulation of

the ion is significantly decreased, as̃Ca(t = 6 h)≈ 1.1. These observations could provide an additional explanation

of the great heterogeneity of calcium responses in the same population: not only calcium machinery expression can

vary from cell to cell, but also in cells expressing the same amount of channels the response could significantly change

in function of the their geometry. Moreover, with another view point, the same cell can vary its response to the same

external chemical stimuli only by varying its shape, which is of particular relevance during vascular development,

when the ECs constantly remodel.

When the external chemical signal is extended to the whole right lower edge of the migration chamber, with the

same intensityφV , we observe a different cell shape reorganization, see Fig. 11(A) and Video S3. After an initial

stage (≈ 1 h), in which its phenomenology resembles the standard case in Fig. 6, the motile EC adapts to the new

VEGF profile, featuring a flat and thin (≈ 2 µm) lamella in the direction of motion. An interesting consideration that

emerges here is that such a different morphological transition is completely self-generating, and only due to the new
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Figure 10:Inhibition of active cytoskeletal reorganization,λ2 = 50. (A) Three-dimensional view of cell position (red dot repre-
sents the VEGF source), (B) and (C) contour plots showing intracellular calcium concentration during cell motion in, respectively,
z=1 µm plane andy=50 µm plane. For (A), (B), and (C) representative images taken, as usually, at 45 min intervals untilt = 6.
(D) Evolution in time of cell directional velocityvx. (E) Ca2+ concentration profiles at the end of migration,t = 6 h, along cell
x-cross-section of thez=1 µm plane from the trailing edge to the leading edge. Mean over 10 simulations, error bars represent
standard deviation.
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Figure 11:VEGF source extended to the whole right lower edge of the migration chamber. (A) Three-dimensional view of cell
position (red line represents the VEGF source), (B) and (C) contour plots showing intracellular calcium concentration during cell
motion in, respectively,z=1 µm plane andy=50µm plane. For (A), (B), and (C) representative images taken, as usually, at 45 min
intervals untilt = 6. (D) Evolution in time of cell directional velocityvx. (E) Ca2+ concentration profiles at the end of migration,
t = 6 h, along cellx-cross-section of thez=1 µm plane from the trailing edge to the leading edge. Mean over 10 simulations, error
bars represent standard deviation.
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Figure 12: Cell morphological transition in the case of (A) planar (B) punctual VEGF source. Representation of thez=1 µm
plane. Colored isolines indicate chemical levels.

spatial profile of the external stimulus as, beside the extension of the VEGF source, we have not changed any other

model assumptions. The mechanical explanation is that, as reproduced in Fig. 12(A), the planar chemical source

results in a planar front of maximal concentration, which chemotactitally stimulates a larger part of the cell membrane

to protrude, thus forming the flat lamella. On the opposite, the standard VEGF point source features a curved profile:

consequently, the maximal chemical force, given by the maximal chemical gradient, is concentrated on a restricted

part of the cell leading surface, from which the thin pseudopodium emerges, see Fig. 12(B). A further confirmation

of this mechanism is given by the fact that, at the beginning of both simulations, when the curvature effects are not so

strong, the morphology of the cell is very similar. As far as we know, there are noin vitro evidences replicating such

a model outcome, probably because it is very difficult to experimentally vary the local spatial extension of a chemical

source. However, this result is supported by plausible biomechanical implications. External chemical signals are

in fact demonstrated to be locally transmitted from membrane-bound receptors to the nearest ”central nodes” of cell

cytoskeleton, including small G-proteins Cdc42, Rac and Rho [37, 31, 97]. The activity of the rho-family molecules, in

turn, directly drives actin dynamics, regulating and fine-tuning polimerization and nucleation processes of cytoskeletal

filaments, which determine the remodeling of the cytosol and the protrusion of the plasma-membrane [24, 59, 78]. An

extended (i.e., not punctual) exogenous signal may therefore cause the growth of the actin filament network in a larger

part of the cell leading front, eventually resulting in the formation of a flat motility structure, as the lamella emerged

in our simulations. Interestingly, as shown in Fig. 11, the evolution of the cell migratory properties (the overall

displacement, asxCM (t = 6 h) = 300µm, and the directional velocity) remains almost unaltered w.r.t. the standard

case as well as the VEGF-induced calcium dynamics. In particular, the peak of maximal calcium response, which

remains localized in the thinner part of the cell (in the lamellipodium), measures≈ 2.2µM, while C̃a(t = 6 h)≈ 3.4.

This consideration provides the fact that proangiogenic Ca2+ signals are typically localized in the motility structures

(either pseudopodia or lamellipodia) of vascular cells: such a peculiar pattern could in principle carry information of

the specific role of the ion in other cellular functions, such as the adhesive interactions with neighboring cells during
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the formation of vascular chords.

The model has been able to characterize the phenomenological migration of a VEGF-stimulated vascular cell and

the relative calcium events, to reproduce the activity of some anti-angiogenic pharmacological compounds, and to

suggest the use of already existing drugs (such as phalloidin-like compounds) to inhibit cell locomotion. We now can

turn to perform simulations that provide additional insights of the calcium-dependent factors that control the migratory

properties of the vascular cell. In particular, we focus on some conditions that would be difficult or impossible to

actually establishin vitro, but that can suggest nonintuitive, but potentially very effective ways to interfere with the

motility capacity of the EC.

The diffusion is clearly a crucial element in the intracellular propagation of calcium, and therefore affects a number

of localized biochemical processes, as the feedback mechanism included in the kinetic scheme of AA and NO and the

cell chemical sensitivity. A quantification of its importance is tested by settingDCa= 0 in Eq. (2.17). Without

diffusion, the calcium ions entered from the medium are completely sequestered in the inner surface of the PM, and

therefore calcium signals do not longer occur throughout the entire cell volume, see Fig. 13(B-C-E). In particular,

the cell quickly reaches the peaks of calcium accumulation, which have the same intensity and localization (i.e., at

the tip of the pseudopodium) as in the standard case. However, the EC undergoes only a partial elongation, which

results in a lower directional velocity and a consequent decrement in the final displacement, asxCM (t = 6 h) = 165

µm, see Fig. 13(A-D). These results have a clear biological relevance, since they represent a definitive demonstration

that the cell migratory properties are not established by the maximal amplitude of calcium responses (which, as seen,

remains unchanged), but by the overall intracellular concentration of the ion, which is obviously strongly reduced by

the exclusion of its diffusive behavior, as̃Ca(t = 6 h)≈ 0.9.

Modelling allows us to assess the perturbing effect of endogenous buffers on calcium signalling and on the overall

migratory capacity of the cell. In the absence of buffers (i.e., by imposingKbuff = 1 in Eq. (2.17)), the spatial

dynamics of Ca2+ events are not affected, but, as expected, the local concentrations are greater than control, see Fig.

13(B-C-H). In particular, the intracellular region in which calcium signals are not detectable decreases in size, as it is

now restricted in the close proximity of the nucleus (at this regards, it is useful to compare the spatial profiles of the ion

in Figs. 7 and 13). The consequent increment in the total intracellular calcium level (i.e.,C̃a(t = 5 h)≈ 3.9) enhances

the migratory capacities of the EC, as the effective velocity grows up to≈ 46 µ/h, and the cell reaches the opposite

side of the chamber in nearly 5 hours, as shown in Fig. 14(A-G). We finally model a spatially inhomogeneous buffer

distribution: in particular, an increasing clusterization of buffers is set toward the central regions of the cell, where

the perinuclear mitochondria are more concentrated (as widely shown in literature [1] and confirmed by Munaron by

staining with mitotracker [75]). Mathematically, we locally vary factorKbuff :
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Figure 13:Cell migration with the exclusion of calcium diffusion (DCa = 0). (A) Three-dimensional view of cell position att=6
h, red dot represents the VEGF source. Contour plots showing the final intracellular calcium concentrations in (B)z=1 µm plane
and (C)y=50µm plane. Calcium concentration has been pseudocolor-scaled so that the maximum value is red. (D) Evolution in
time of cell directional velocityvx. (E) Ca2+ concentration profiles at the end of migration,t = 6 h, along cellx-cross-section
of the z=1 µm plane from the trailing edge to the leading edge of the polarized cell. The cell is quicker to reach the maximal
directional velocity. which has a lower maximal peak. Mean over 10 simulations, error bars represent standard deviation.
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Figure 14: Cell migration with interference in the buffering process. (A) Three-dimensional view of cell position att=5 h in
the case of no buffers with the relative intracellular calcium profiles in (B)z=1 µm plane and (C)y=50 µm plane. (D) Three-
dimensional view of cell position att=6 h in the case of buffer clusterization, and relative contour plots of the final intracellular
calcium concentration in (E)z=1 µm plane and (F)y=50 µm plane. In (A) and (D) red dot represents the VEGF source. (G)
Evolution in time of cell directional velocityvx in both cases. (H) Ca2+ concentration profiles at the end of migration,t = 5 h
in the absence of buffers andt = 6 h in the case of clusterized buffers, along cellx-cross-section of thez=1 µm plane from the
trailing edge to the leading edge of the polarized cell. Mean over 10 simulations, error bars represent standard deviation.
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Kbuff (x) =
Koff

Koff + KonbT

d(x)
d0

, (3.1)

whered(x) andd0 are the measures of the net euclidean distance from the PM of, respectively, sitex and of the cell

center of massxCM . With respect to the standard case, also the proposed buffer clusterization does not strongly change

the final spatial profile of calcium, but causes an increment of the maximal peak of responses at the tip of the motility

structures (whose value is obviously the same as in the absence of buffers) and a decrement in the concentration of the

ion in the more internal regions (i.e., the elevate presence of buffers almost blocks the diffusion of calcium, so that the

zone with a basal level of the ion is bigger), see Fig. 14(E-F-H). Indeed, we have a steeper gradient of the intracellular

Ca2+ level along the polarized axes of the cell, as illustrated in detail in Fig. 14(H). However, the total final calcium

concentration remains almost elevate (C̃a(t = 6 h) ≈ 3.2), as well as the motile capability of the cell, as we do not

observe a significant reduction in the maximal value ofvx and, consequently, a delay in the cell migration time, see

Fig. 14(D-G).

Figure 15: Review of the proposed strategies interfering with cell motility. Second column gives the relative modified model
parameters. The last four columns quantify each treatment by summarizing the critical parameters describing both the resulting
calcium signals and the overall migratory ability of the EC. All values are mean over 10 simulations. Control solution represents
the no treatment case, with no changes in the standard parameter setting, and corresponds to the simulations in Figs. 6 and 7.

In Fig. 15, we review all the proposed strategies to influence the phenomenology of the motile cell. In particular,

we summarize the values of critical parameters quantifying both the VEGF-induced calcium signals and the resulting

migratory properties of the EC.

31



M. SCIANNA A M ULTISCALE HYBRID MODEL FORPRO-ANGIOGENIC CALCIUM SIGNALS IN A VASCULAR ENDOTHELIAL CELL

4 Discussion

Calcium signaling represents a central mode for transducing information during a number of biological processes, in-

cluding physiological and pathological neovascularization. In vascular endothelial cells, stimulations with angiogenic

factors, such as VEGF isoforms, are in fact seen to trigger robust and reproducible calcium events (via the activation

of second messenger arachidonic acid, AA, and nitric oxide, NO, cascades), which, in turn, mediate several mech-

anisms fundamental for cell migration, such cell polarization and increases in its intrinsic motility and chemotactic

sensitivity. A number of mathematical approaches (both discrete [60, 61, 62], and continuous [92, 99]) have char-

acterized the motion of vascular cells, as well as several techniques have treated calcium dynamics in different cell

types [26, 42, 49, 93]. We have here combined such modules into an hybrid and multiscale framework, whose aim

has been to analyze the complex relation between intracellular Ca2+ dynamics and the migratory phenomenology of a

vascular EC. To achieve this goal, a modified version of a well-characterized model of proangiogenic calcium events

[75], based on experimental data mainly obtained from electrophysiological experiments and single cell fluorimetric

measurements, has been incorporated into a spatial-defined mesoscopic Cellular Potts Model. The CPM, in turn, has

been characterized by a three-dimensional bicompartmentalized cell approximating the morphology of a real endothe-

lial cell. Even if some other published CPM applications have used a compartmentalization approach for biological

cells, which is also included as a standard possibility in the CompuCell3D package [4, 58, 101], we have made a

further step forward introducing a set of compartments characterized by their immediate and direct correspondence

to real subcellular elements, as this is the first time that a CPM accurately differentiates a cell in its nucleus and the

cytosolic region (see also [91] form more details). Moreover, as a key features of our work, the interactions between

the different levels have been explicitly modeled: the variation in cell-level biophysical and biomechanical properties,

such as motility, chemotactic strength, and compressibility, given by the typical Potts parameters, have been in fact

directly inherited from internal biochemical mechanisms.

The results of this multilevel approach have shown qualitative and quantitative agreement with empirical data, be-

ing capable of characterizing the proangiogenic calcium responses for their initiation site, propagation dynamic, and

final pattern, as well as of capturing the phenomenological migration of a vascular cell, which has featured comparable

directional velocity as experimental cultures, see [41]. In particular, the reproduction of the polarization process has

had an high degree of resemblance to that of real vascular ECs observed, for example, in [23]. What confers value

to our results is that such a cell behavior has been almost self-generating, as the only model artifact introduced in our

approach has been the stiffness of the nucleus (i.e., its staking to the underlying lattice, see Section 3 for a detailed

comment), which has resulted in its slow motion and in its lagging behind the cytosolic region. However, we have
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not needed of other artificial rules beyond, such as predefined spatial information (for example a given target length,

as done in [61]) or specific phenomenological rules associated to the different cell compartment. This provides the

fact that a calcium-dependent elasticity of the cell cytosol, in conjunction with the presence of a rigid nucleus and of a

local chemical stimulus, constitutes a sufficient set of minimal and simplified requirements for the cell transition from

a symmetric stationary morphology to a polarized mobile state. Another correct aspect that has emerged has been

the distribution of the intracellular calcium concentration, which has closely reproduced experimental observations in

[98]. Pro-angiogenic calcium responses have been found to inhomogeneously propagate from the sub-plasma mem-

brane regions to the whole cells, leading to a strongly localized final pattern. Higher cytosolic calcium accumulations

have in fact been restricted in the thinner motility structures of the leading front of the EC (i.e., either pseudopodia

or lamellipodia), while their peaks decrease in the thicker central/nuclear region. These considerations have clearly

demonstrated that local levels of the ion are strictly geometric-dependent. This heterogeneity is highly relevant during

angiogenic progression, when ECs constantly reorganize their shape, and explains the reason why cells expressing the

same amount of channel have different response to analogous stimulations. Moreover, several reports suggest that the

transcriptional pattern of specific genes during vascular progression critically depends on the spatio-temporal calcium

dynamics [22, 25]. This model has also confirmed the efficiency some current anti-angiogenic therapies (such as the

use of CAI, L-NAME, and AACOCF3 drugs [67, 76, 98]), suggested novel and experimentally testable strategies, as

the block of actin-myosin interaction with phalloidin-like compounds, and proposed non-intuitive, currently unavail-

able but potentially interesting way to stop cell locomotion by interfering with calcium signaling mechanisms, such as

the inhibition of intracellular calcium diffusion, see Fig. 15 for a useful review.

In our opinion, this study is a big step towards a multiscale integration between a discrete cellular-level approach

and a continuous subcellular-level model. However, it contains a number of assumptions. In fact simplifications

have been made to minimize the number of interacting molecular components within the model, and thus to limit its

size and the spatial complexity: the reason has been the improvement of its computational efficiency, while main-

taining the accuracy of simulations. For example, the model has been facilitated, in the considered precise range of

VEGF stimulation (micromolar levels,< 5 µM), by the absence of other possible mechanisms for calcium signalling

than the nonstore-operated calcium entry (NSOCE), such as calcium-induced calcium release via ryanodine receptor

and calcium release from intra-cellular stores. Moreover, PM channels and pumps have been modeled as uniformly

distributed over the entire cell surface, and several membrane-localized signal transduction proteins, that are known

intermediates in AA and NO generation, such as PLA2 and eNOS, have not been included. We have also assumed that

cell adhesion mechanisms, as the coordinated development and release of focal adhesions (FAs), a basic requirement

for cell movement, were energetically neutral. In this way, we have considered the chemotactic stimulus as the only
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cause of cell directional migration.

Finally, if a number of parameters of the model, such as diffusion coefficients, channel and pump kinetics, and

endogenous buffers, have been taken from the literature and are specifically referred to ECs, others have been derived

from experiments with different cell lines and experimental conditions. However, they have been constrained in a

range consistent with our own system. Eventually, when a parameter was not available, it has been estimated within

reasonable biophysical constraints, see Appendix for details.

The two parts the model is formed by can be still improved working in several directions. A natural development of

the discrete CPM will be the incorporation of a description of the kinetics of the cytoskeletal remodeling. The present

version of the model in fact does not focus on the dynamics of actin filaments, but rather considers the cell cytosol

as a single elastic body undergoing local mechanical stresses, due to thermodynamic forces and chemical stimuli, on

its membrane. A more detailed multiscale model would combine both approaches, using the stress distributions at the

PM as a signaling input for the subsequent polimerization process of the actin cytoskeleton. The introduction of the

dynamics of the cell cytoskeleton would result also in a more accurate description of the movement of cell nucleus. As

explained in Sec. 3, its motion is in fact characterized by two well-defined contributions, approached in the presented

method with a simplified picture: a negligible autonomous fluctuation within the cytoplasmatic fluid and the drag

movement due to the interactions with the matrix substrate, mediated by intermediate filaments and microtubules,

which could be more realistically described by an explicit model of the actin component of the cell cytoskeleton.

Moreover, the description of the VEGF-induced calcium dynamics will be greatly improved by more constraints

obtained mainly by biochemical quantitative measurements. In particular, a more detailed quantitative description

of the molecular machinery underlying AA and NO release, as well as further structural and functional information

on calcium channels and pumps would be very useful. In particular, this model is based on the hypothesis of two

independent channels (AA- or NO-activated), but we cannot exclude neither the existence of channels co-modulated

by AA and NO nor potential cross regulations between different channel types: for example, several member of the

TRP family (in particular TRPC and TRPV sub-families) can be also involved in the proangiogenic signals [50, 74, 77].

All these refinements will also help to ascertain more accurate parameter values for the model, to quantitatively test

its predictions and to ensure that it is biologically realistic.

A further interesting model development will be its extension to a population of vascular ECs, simulating either an

in vitro tubulogenic assay, or anin vivoangiogenic progression. These approaches could in fact provide a deep analysis

on how the biochemical and biomechanical processes modeled here influence the overall formation of a malignant

vasculature. Obviously this model extension will require the inclusion of several other biological mechanisms, such

as cell proliferation (which has not been included in this work since the temporal scale involved here is much lower
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than the typical duration of a cell cycle,� 6 hours) and differentiation, as well as cell-cell adhesive interactions and

contact inhibition of growth.
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A Appendix - Parameter Estimates

Many values of parameters used in the model have been inferred from experimental measurements on various endothelial cell

lineages. Therefore, we have assembled parameter estimates based on a composite set of data. However, we have observed that

the behavior of the model is fairly robust in large regions of parameter space around our estimates, leading to confidence in the

biological relevance of results, which have been also confirmed by quantitative comparisons within vitro results. A summary of

parameter values used in the model has been done in Tables I, II and III. In this Appendix we give details of how we have calculated

these estimates.

A.1 Parameter Estimates of the Discrete Extended Cellular Potts Model

Given the energetic nature of the CPM, a direct one-to-one correspondence between the CPM parameters and the experimental

quantities is not straightforward (see also reviews [33, 63] for a comment). However, it is possible to realistically and accurately

infer these values by deriving empirical relationships within vitro measurements. The model parameters related to the basal (i.e.

in the unstimulated case) motility properties of the cell,T0 (the size of cell membrane fluctuation in resting conditions) andµpers,0

(the basal persistence parameter) have been estimated with a quantitative comparison with experimental analysis. In particular, we

have computed the displacementd covered in a 3 hours time-lapse by the cell incontrol conditions(which is simplyd = x(t = 3

h) − x(t = 0), wherex is the position of the cell center of mass), and have fitted this value with analogous measurements for EC

autonomous motility in embryonic mouse allantoides, made in [81]. The values in the parameter space that have lead to the optimal

empirical fitting toin vitro data wereT0 = 3.5 andµpers,0 = 0.8, see Fig. 16.
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Figure 16:Effective displacement (d = x(t = 3 h)− x(t = 0), wherex is the position of the cell center of mass) of unstimulated
vascular endothelial cell in a 3 hours time lapse for experimental (red line, see [81]) and simulated (black line) case. Mean values
over 10 simulations. Left plot has been used to estimate the intrinsic motility of the cellT0, right plot to estimate its basal persistence
timeµpers,0.

µch,0 is the intrinsic chemotactic strength of the cell, which has no influence in control conditions, since, without VEGF

stimulation,∆Hchemotaxis = 0 (see Eq. (2.7)). As biological measurements were not available, we have tried a wide range of

low values and selectedµch,0 = 0.2, assuming that the chemical sensitivity of the cell is strongly increased by cytosolic calcium

ions. T1 is instead linked to the motility of the cell nucleus. In particular, low values ofT1 translate to small nuclear membrane

fluctuation, which is biologically reasonable (see Sec 3 for a detailed explanation). As experimental data on nuclear membrane

fluctuations were not available, we have experimented with a large range of values, before settling onT1 = 0.25. µ1 andλ1

concern the growth and the deformation ability of the cell nucleus. We have not found yet a way to determine them directly from

experimental data, since the the biomechanical properties of cell nuclei have, until now, received little attention. However, we have

used the high values ofµ1 = λ1 = 20 to keep the stochastic geometrical fluctuations of the nuclear cluster almost negligible.µ2

regulates endothelial cell growth, but it does not directly influence its phenomenology. Since we have not included in the model

any nutrients, after some trials, we have setµ2 = 20. This in order to keep fluctuations in cell volume within a few percent.

The parameterλ2,0 is related to the basal compressibility of the cell (i.e in the absence of any endogenous chemical stimulation or

force): observing that resting EC maintained their initial geometrical configuration, with negligible changes of shape or cytoskeletal

active reorganization, we have chosenλ2,0 = 1.2. The parameterJ1,2 is related to the generalized adhesion between the nuclear

cluster and the cytosolic region. It prevents the EC compartments from disconnecting, however it has a limited effect on the cell

dynamics. We have chosen a highJ1,2 = −20.

36



M. SCIANNA A M ULTISCALE HYBRID MODEL FORPRO-ANGIOGENIC CALCIUM SIGNALS IN A VASCULAR ENDOTHELIAL CELL

A.2 Parameter Estimates of the Continuous Models of VEGF-Induced Calcium-Dependent

Biochemical Mechanisms

VEGF diffusionDV = 10 µm2s−1 and decayλV = 1.8 · 10−4 s−1 have been quoted in [92].βV (t), the maximal amount of

VEGF molecules that can be locally (i.e. per site) bound and internalized by the EC for unit of time has been estimated following

[6, 56]. In particular, for the computation ofβV (t), we have considered a spatially homogeneous average number of VEGF

receptors per cell membrane site, which has been estimated by dividing the total number of VEGF receptor in a generic endothelial

cell, considered constant and equal to 311.200 (as measured in [102] for human colonic ECs), for the actual extension of the EC

membrane, which is initially equal to 2700µm2 [98]. The local number of VEGF receptor thus varies in time: however, to avoid

further overcomplication, we have not taken into account of other time-dependent phenomena, such as receptor clusterization.

Moreover we have taken into account an instantaneous VEGF-receptor complex internalization rate of 4.3· 10−4 per second [55],

and 45 kDa as the molecular weight for a VEGF molecule [17].

We have taken the cytosolic diffusion parameter of AA,DAA = 10 µm2s−1, and its degradation rate,λAA = 30 s−1 from

[75], where they have been estimated fitting experimental measurements made by the same group on bovine aortic endothelial cells

[67]. The Michaelis-Menten coefficientskAA = 30 µMs−1 andKAA = 1 µM of the VEGF receptor-mediated production of AA

have been chosen for the best fit with experimental measures made for the same theoretical paper [75]. The Ca2+-induced AA

release has been modeled with another saturable Michaelis-Menten function: in the absence of more precise experimental data we

have setvCa = 0.5 ·vCaAA andcAA = cNO (for the values ofvCaAA andcNO see below). With these approximated values we

have assumed that the calcium-dependent biosynthesis of both AA and NO happen at comparable rates and time scales.

The intracellular NO diffusion has been taken to beDNO = 3300 µm2s−1: it has been calculated in [52] and used also in

[75]. The coefficient of NO degradationλNO = 0.1 s−1 has been evaluated in [75]. Since few data were available for the VEGF

receptor-mediated production of NO we have usedkNO = kAA andKNO = KAA. The production of NO regulated by both

AA and Ca2+ has been also described by a classical Michaelis-Menten function:vCaAA = 1.5 µMs−1, the maximal rate of NO

release, has been estimated by fitting the time course of NO production experimentally measured using fluorescent probes and

selective electrodes in [14, 67]. The dissociation constants between Ca2+ and eNOS,cNO = 0.3 µM, and between AA and eNOS,

aAA = 0.2 µM, have been also taken from [75, 83].

The local resting cytosolic Ca2+ concentration, Ca0 = 0.05 µM, and the external calcium concentration, Caext,0 = 2000

µM, have been assumed uniform and taken from experimental [10] and theoretical [75] works. The calcium diffusion coefficient

DCa = 220 µm2s−1 has been well characterized in literature for several cell lines [26, 46, 75]. Several authors model the Ca2+

efflux as a sum of Hill functions [75, 100]. We have approximated this by a single Michaelis-Menten term, with coefficients

kCa = 24.7 µMs−1, the maximal rate of extrusion, andCaout = 0.32 µM, the calcium concentration at which the rate of

exchange is half maximal, chosen to fit those Hill-type curves over a physiological range of calcium concentration. The calcium

entry through AA- and NO-sensitive channels has been described by saturable Michaelis-Menten relations, whereFAA,max and

FNO,max are the maximal possible influx rates.qAA and qNO are the concentrations of AA and NO responsible for the half
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maximal activation of the respective channels. All these parameters have been chosen to fit the calcium-permeable channel currents

obtained by patch clamp experiments in [67, 75]. The rates of buffering and debuffering of Ca2+ to intracellular proteins have been

measured by several experimental works. In particular, we have usedKon = 100 µM−1s−1 andKoff = 300 s−1 from [8]. The

total concentration of calcium binding sites in the cytosol has instead been estimated to bebT = 450 µM, accordingly to [26, 75].
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