58 research outputs found

    Genome-wide association study for renal traits in the Framingham Heart and Atherosclerosis Risk in Communities Studies

    Get PDF
    Background: The Framingham Heart Study (FHS) recently obtained initial results from the first genome-wide association scan for renal traits. The study of 70,987 single nucleotide polymorphisms (SNPs) in 1,010 FHS participants provides a list of SNPs showing the strongest associations with renal traits which need to be verified in independent study samples. Methods: Sixteen SNPs were selected for replication based on the most promising associations with chronic kidney disease (CKD), estimated glomerular filtration rate (eGFR), and serum cystatin C in FHS. These SNPs were genotyped in 15,747 participants of the Atherosclerosis in Communities (ARIC) Study and evaluated for association using multivariable adjusted regression analyses. Primary outcomes in ARIC were CKD and eGFR. Secondary prospective analyses were conducted for association with kidney disease progression using multivariable adjusted Cox proportional hazards regression. The definition of the outcomes, all covariates, and the use of an additive genetic model was consistent with the original analyses in FHS. Results: The intronic SNP rs6495446 in the gene MTHFS was significantly associated with CKD among white ARIC participants at visit 4: the odds ratio per each C allele was 1.24 (95% CI 1.09–1.41, p = 0.001). Borderline significant associations of rs6495446 were observed with CKD at study visit 1 (p = 0.024), eGFR at study visits 1 (p = 0.073) and 4 (lower mean eGFR per C allele by 0.6 ml/min/1.73 m2\text{m}^2, p = 0.043) and kidney disease progression (hazard ratio 1.13 per each C allele, 95% CI 1.00–1.26, p = 0.041). Another SNP, rs3779748 in EYA1, was significantly associated with CKD at ARIC visit 1 (odds ratio per each T allele 1.22, p = 0.01), but only with eGFR and cystatin C in FHS. Conclusion: This genome-wide association study provides unbiased information implicating MTHFS as a candidate gene for kidney disease. Our findings highlight the importance of replication to identify common SNPs associated with renal traits

    Predicting Diabetic Nephropathy Using a Multifactorial Genetic Model

    Get PDF
    AIMS: The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can improve prediction. METHODS: Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or Type 2 diabetes of >10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs nominally associated with nephropathy in our population. The model was validated by using random "training" (75%) and "test" (25%) subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi patients. RESULTS: The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5) and 5 conventional variables (age, sex, ethnicity, diabetes type and duration), and allowing for all possible two-way interactions, predicted nephropathy in our initial population (C-statistic = 0.672) better than a model based on conventional variables only (C = 0.569). In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576), it remained highly associated with diabetic nephropathy (χ(2) = 17.79, p<0.0001). In the replication dataset, the model based on conventional variables only was not associated with nephropathy (χ(2) = 3.2673, p = 0.07). CONCLUSION: In this proof-of-concept study, we developed and validated a genetic model in the Ashkenazi/Sephardic population predicting nephropathy more effectively than a similarly constructed non-genetic model. Further testing is required to determine if this modeling approach, using an optimally selected panel of genetic markers, can provide clinically useful prediction and if generic models can be developed for use across multiple ethnic groups or if population-specific models are required

    Inflammation gene variants and susceptibility to albuminuria in the U.S. population: analysis in the Third National Health and Nutrition Examination Survey (NHANES III), 1991-1994

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Albuminuria, a common marker of kidney damage, serves as an important predictive factor for the progression of kidney disease and for the development of cardiovascular disease. While the underlying etiology is unclear, chronic, low-grade inflammation is a suspected key factor. Genetic variants within genes involved in inflammatory processes may, therefore, contribute to the development of albuminuria.</p> <p>Methods</p> <p>We evaluated 60 polymorphisms within 27 inflammatory response genes in participants from the second phase (1991-1994) of the Third National Health and Nutrition Examination Survey (NHANES III), a population-based and nationally representative survey of the United States. Albuminuria was evaluated as logarithm-transformed albumin-to-creatinine ratio (ACR), as ACR ≥ 30 mg/g, and as ACR above sex-specific thresholds. Multivariable linear regression and haplotype trend analyses were conducted to test for genetic associations in 5321 participants aged 20 years or older. Differences in allele and genotype distributions among non-Hispanic whites, non-Hispanic blacks, and Mexican Americans were tested in additive and codominant genetic models.</p> <p>Results</p> <p>Variants in several genes were found to be marginally associated (uncorrected P value < 0.05) with log(ACR) in at least one race/ethnic group, but none remained significant in crude or fully-adjusted models when correcting for the false-discovery rate (FDR). In analyses of sex-specific albuminuria, <it>IL1B </it>(rs1143623) among Mexican Americans remained significantly associated with increased odds, while <it>IL1B </it>(rs1143623), <it>CRP </it>(rs1800947) and <it>NOS3 </it>(rs2070744) were significantly associated with ACR ≥ 30 mg/g in this population (additive models, FDR-P < 0.05). In contrast, no variants were found to be associated with albuminuria among non-Hispanic blacks after adjustment for multiple testing. The only variant among non-Hispanic whites significantly associated with any outcome was <it>TNF </it>rs1800750, which failed the test for Hardy-Weinberg proportions in this population. Haplotypes within <it>MBL2</it>, <it>CRP</it>, <it>ADRB2, IL4R</it>, <it>NOS3</it>, and <it>VDR </it>were significantly associated (FDR-P < 0.05) with log(ACR) or albuminuria in at least one race/ethnic group.</p> <p>Conclusions</p> <p>Our findings suggest a small role for genetic variation within inflammation-related genes to the susceptibility to albuminuria. Additional studies are needed to further assess whether genetic variation in these, and untested, inflammation genes alter the susceptibility to kidney damage.</p

    A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum creatinine (S<sub>CR</sub>) is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in S<sub>CR </sub>level is explicable by genetic factors.</p> <p>Methods</p> <p>We performed a meta-analysis of genome-wide association studies of S<sub>CR </sub>undertaken in five population isolates ('discovery cohorts'), all of which are part of the European Special Population Network (EUROSPAN) project. Genes showing the strongest evidence for an association with S<sub>CR </sub>(candidate loci) were replicated in two additional population-based samples ('replication cohorts').</p> <p>Results</p> <p>After the discovery meta-analysis, 29 loci were selected for replication. Association between S<sub>CR </sub>level and polymorphisms in the collagen type XXII alpha 1 (<it>COL22A1</it>) gene, on chromosome 8, and in the synaptotagmin-1 (<it>SYT1</it>) gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 × 10<sup>-6 </sup>and 1.7 × 10<sup>-4</sup>, respectively). Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (<it>GABRR2</it>) gene and the ubiquitin-conjugating enzyme E2-J1 (<it>UBE2J1</it>) gene (replication p value = 3.6 × 10<sup>-3</sup>). Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (<it>UMOD</it>) gene and in the schroom family member 3 (<it>SCHROOM3</it>) gene were also replicated.</p> <p>Conclusions</p> <p>While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes <it>SYT1 </it>and <it>GABRR2 </it>corroborate previous findings that highlighted a possible role of the neurotransmitters GABA<sub>A </sub>receptors in the regulation of the glomerular basement membrane and a possible interaction between GABA<sub>A</sub>receptors and synaptotagmin-I at the podocyte level.</p
    corecore