64 research outputs found
Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014
High mixing ratios of ozone (O3) in the northern Front Range (NFR) of Colorado are not limited to the urban Denver area but were also observed in rural areas where oil and gas activity is the primary source of O3 precursors. On individual days, oil and gas O3 precursors can contribute in excess of 30 ppb to O3 growth and can lead to exceedances of the EPA O3 National Ambient Air Quality Standard. Data used in this study were gathered from continuous surface O3 monitors for June–August 2013–2015 as well as additional flask measurements and mobile laboratories that were part of the FRAPPE/DISCOVER-AQ field campaign of July–August 2014. Overall observed O3 levels during the summer of 2014 were lower than in 2013, likely due to cooler and damper weather than an average summer. This study determined the median hourly surface O3 mixing ratio in the NFR on summer days with limited photochemical production to be approximately 45–55 ppb. Mobile laboratory and flask data collected on three days provide representative case studies of different O3 formation environments in and around Greeley, Colorado. Observations of several gases (including methane, ethane, CO, nitrous oxide) along with O3 are used to identify sources of O3 precursor emissions. A July 23 survey demonstrated low O3 (45–60 ppb) while August 3 and August 13 surveys recorded O3 levels of 75–80 ppb or more. August 3 exemplifies influence of moderate urban and high oil and gas O3 precursor emissions. August 13 demonstrates high oil and gas emissions, low agricultural emissions, and CO measurements that were well correlated with ethane from oil and gas, suggesting an oil and gas related activity as a NOx and O3 precursor source. Low isoprene levels indicated that they were not a significant contributor to O3 precursors measured during the case studies
Blood-Based Biomarkers for Traumatic Brain Injury: Evaluation of Research Approaches, Available Methods and Potential Utility from the Clinician and Clinical Laboratory Perspectives
Blood-based biomarkers for traumatic brain injury (TBI) have been investigated and proposed for decades, yet the current clinical assessment of TBI is largely based on clinical symptoms that can vary widely amongst patients, and have significant overlap with unrelated disease states. A careful review of current treatment guidelines for TBI further highlights the potential utility of a blood-based TBI biomarker panel in augmenting clinical decision making. Numerous expert reviews on blood-based TBI biomarkers have been published but a close look at the methods used and the astonishing paucity of validation and quality control data has not been undertaken from the vantage point of the clinical laboratory. Further, the field of blood-based TBI biomarker research has failed to adequately examine sex and gender differences between men and women with respect to the clinical care settings, as well as differences in physiological outcomes of TBI biomarker studies. Discussions of triedand-true laboratory techniques in addition to a few new ones already operating in the clinical laboratory are summarized with a consideration of their utility in TBI biomarker assessment. In the context of TBI biomarkers, the central concerns discussed in this review are the readiness of the clinical laboratory, the willingness of the research environment and the inherent ability of each to radically affect patient outcomes in TBI
Utilization of the Clinical Laboratory for the Implementation of Concussion Biomarkers in Collegiate Football and the Necessity of Personalized and Predictive Athlete Specific Reference Intervals
Background: A continued interest in concussion biomarkers makes the eventual implementation of identified biomarkers into routine concussion assessment an eventual reality. We sought to develop and test an interdisciplinary approach that could be used to integrate blood-based biomarkers into the established concussion management program for a collegiate football team.
Methods: We used a CLIA-certified laboratory for all testing and chose biomarkers where clinically validated testing was available as would be required for results used in clinical decision making. We summarized the existing methods and results for concussion assessment across an entire season to identify and demonstrate the challenges with the eventual integration of a parallel process using blood-based tests for concussion management. We analyzed the results of the biomarkers chosen for trends consistent with the outcome assessments provided from the current concussion management protocols.
Results: Baseline samples were collected with three additional post-concussion samples collected at three separate time points from players with a diagnosed concussion (n = 12). A summary of results from currently used concussion assessment tools were compared to the representative biomarkers S100B and NSE results. Nine sport-related concussions occurred during practice and three during play. For S100B, 50 % had follow-up testing results lower than the post-injury result. In contrast, 92 % of NSE follow-up results were lower than post-injury. One hundred percent of the results for S100B and NSE were within the athlete-derived reference intervals upon return-to-play and season end.
Conclusions: The reported workflow provides a framework for the eventual implementation of biomarkers for concussion assessment into existing assessment protocols and strengthens the need for reliance on clinical laboratory testing. Athlete-specific reference intervals will be required to adequately interpret results
An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker
We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed –0.65 PgC/yr (1 petagram = 10^15 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of –0.4 to –1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to –0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov
Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah
Winter maximum daily 8-hour average (MDA8) ozone concentrations in the Upper Green River Basin, Wyoming (UGRBWY) and the Uintah Basin, Utah (UBUT) have frequently exceeded 100 ppb in January, February and March, in the past few years. Such levels are well above the U.S. air quality standard of 75 ppb. In these two remote basins in the Rockies, local ozone precursor emissions result from intense oil and gas extraction activities that release methane, volatile organic compounds (VOCs), and nitrogen oxides (NOx) to the atmosphere. These emissions become trapped beneath a stable and shallow (~50–200 m) boundary layer maintained in low wind conditions. Wintertime surface ozone formation conditions are more likely in the UBUT than in the UGRBWY as the topography of the UBUT is an enclosed basin whereas the UGRBWY is open on its southern perimeter thus allowing for more air turnover. With snow-covered ground, high ozone events regularly begin in mid-December and last into early March in the UBUT whereas they usually do not begin in earnest until about a month later in the UGRBWY and may persist until mid-March. Winters without snow cover and the accompanying cold pool meteorological conditions do not experience high ozone events in either basin. For nine years with ozone observations in the UGRBWY (2005–2013) and four in the UBUT (2010–2013), all years with adequate (≥6 inches) and persistent snow cover, experienced days with ozone values ≥75 ppb except in 2012 in the UGRBWY when persistent high wind (>5 m/s) conditions were prevalent. Year to year differences in the occurrences of high ozone episodes appear to be driven primarily by differing meteorological conditions rather than by variations in ozone precursor levels
A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air
We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ˜ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe
Recommended from our members
Methane Leaks from North American Natural Gas Systems
Natural gas (NG) is a potential “bridge fuel” during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity (1–3). Also, global atmospheric CH4 concentrations are on the rise, with the causes still poorly understood (4).Engineering and Applied Science
From Nuevo LeĂłn to the USA and Back Again: Transnational Students in Mexico
The movement of Mexicans to the United States is both longstanding and long studied and from that study we know that for many newcomers the attachment to the receiving community is fraught and tentative. The experience of immigrant children in U.S. schools is also relatively well studied and reveals challenges of intercultural communication as well as concurrent and contradictory features of welcome and unwelcome. What is less well known, in the study of migration generally and of transnational students in particular, is how students moving in a less common direction — from the U.S. to Mexico — experience that movement. Based on visits to 173 randomly selected classrooms in the state of Nuevo León Mexico, this study shares survey and interview data from 208 of the 242 students encountered who had previous experience attending school in the United States
- …