126 research outputs found

    Bound hole states in a ferromagnetic (Ga,Mn)As environment

    Full text link
    A numerical technique is developed to solve the Luttinger-Kohn equation for impurity states directly in k-space and is applied to calculate bound hole wave functions in a ferromagnetic (Ga,Mn)As host. The rich properties of the band structure of an arbitrarily strained, ferromagnetic zinc-blende semiconductor yields various features which have direct impact on the detailed shape of a valence band hole bound to an active impurity. The role of strain is discussed on the basis of explicit calculations of bound hole states.Comment: 9 pages, 10 figure

    Lithographic engineering of anisotropies in (Ga,Mn)As

    Full text link
    The focus of studies on ferromagnetic semiconductors is moving from material issues to device functionalities based on novel phenomena often associated with the anisotropy properties of these materials. This is driving a need for a method to locally control the anisotropy in order to allow the elaboration of devices. Here we present a method which provides patterning induced anisotropy which not only can be applied locally, but also dominates over the intrinsic material anisotropy at all temperatures

    Detailed transport investigation of the magnetic anisotropy of (Ga,Mn)As

    Full text link
    This paper discusses transport methods for the investigation of the (Ga,Mn)As magnetic anisotropy. Typical magnetoresistance behaviour for different anisotropy types is discussed, focusing on an in depth discussion of the anisotropy fingerprint technique and extending it to layers with primarily uniaxial magnetic anisotropy. We find that in all (Ga,Mn)As films studied, three anisotropy components are always present. The primary biaxial along ([100] and [010]) along with both uniaxial components along the [110] and [010] crystal directions which are often reported separately. Various fingerprints of typical (Ga,Mn)As transport samples at 4 K are included to illustrate the variation of the relative strength of these anisotropy terms. We further investigate the temperature dependence of the magnetic anisotropy and the domain wall nucleation energy with the help of the fingerprint method

    A questionnaire-based (UM-PDHQ) study of hallucinations in Parkinson's disease

    Get PDF
    Background: Hallucinations occur in 20-40% of PD patients and have been associated with unfavorable clinical outcomes (i.e., nursing home placement, increased mortality). Hallucinations, like other non-motor features of PD, are not well recognized in routine primary/secondary clinical practice. So far, there has been no instrument for uniform characterization of hallucinations in PD. To this end, we developed the University of Miami Parkinson's disease Hallucinations Questionnaire (UM-PDHQ) that allows comprehensive assessment of hallucinations in clinical or research settings.Methods: The UM-PDHQ is composed of 6 quantitative and 14 qualitative items. For our study PD patients of all ages and in all stages of the disease were recruited over an 18-month period. The UPDRS, MMSE, and Beck Depression and Anxiety Inventories were used for comparisons.Results and Discussion: Seventy consecutive PD patients were included in the analyses. Thirty-one (44.3%) were classified as hallucinators and 39 as non-hallucinators. No significant group differences were observed in terms of demographics, disease characteristics, stage, education, depressive/anxiety scores or cognitive functioning (MMSE) between hallucinators and non-hallucinators. Single mode hallucinations were reported in 20/31 (visual/14, auditory/4, olfactory/2) whereas multiple modalities were reported in 11/31 patients. The most common hallucinatory experience was a whole person followed by small animals, insects and reptiles.Conclusion: Using the UM-PDHQ, we were able to define the key characteristics of hallucinations in PD in our cohort. Future directions include the validation of the quantitative part of the questionnaire than will serve as a rating scale for severity of hallucinations

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Treatment of ARDS With Prone Positioning

    Full text link
    Prone positioning was first proposed in the 1970s as a method to improve gas exchange in ARDS. Subsequent observations of dramatic improvement in oxygenation with simple patient rotation motivated the next several decades of research. This work elucidated the physiological mechanisms underlying changes in gas exchange and respiratory mechanics with prone ventilation. However, translating physiological improvements into a clinical benefit has proved challenging; several contemporary trials showed no major clinical benefits with prone positioning. By optimizing patient selection and treatment protocols, the recent Proning Severe ARDS Patients (PROSEVA) trial demonstrated a significant mortality benefit with prone ventilation. This trial, and subsequent meta-analyses, support the role of prone positioning as an effective therapy to reduce mortality in severe ARDS, particularly when applied early with other lung-protective strategies. This review discusses the physiological principles, clinical evidence, and practical application of prone ventilation in ARDS

    Das Aggregationsverhalten von Bande 3-Protein aus menschlichen Erythrozytenmembranen in nichtionischen Detergenzien

    No full text
    corecore