11 research outputs found

    Planck-LFI: Design and Performance of the 4 Kelvin Reference Load Unit

    Get PDF
    The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CR (TM), cooled to approximately 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electro-formed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at [10.1088/1748-0221/4/12/T12006]. 14 pages, 34 figure

    Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity.

    No full text
    An enzyme-linked immunosorbent assay and a whole-cell activity assay were developed which allowed detection of methanol dehydrogenase (MDH) of Paracoccus denitrificans with increased sensitivity. By these methods, it was shown that MDH was not induced by its natural substrate, methanol. Relief from a catabolite repression-like mechanism seemed responsible for low-level MDH synthesis, while product induction was the hypothesized mechanism for synthesis of high amounts of MDH. In the latter process, formaldehyde may play an important role as effector. For a variety of culture conditions, inconsistencies were observed in the relation between amounts of MDH protein synthesized and enzyme activities measured in vitro. Regulation of pyrrolo-quinoline-quinone biosynthesis or a modulation of its incorporation and stability in MDH may constitute an overriding mechanism to ensure a correct tuning between metabolic rates of methanol consumption and the required methanol oxidation rates

    Window contamination on Expose-R

    Get PDF
    International audienceExpose is a multi-user instrument for astrobiological and astrochemical experiments in space. Installed at the outer surface of the International Space Station, it enables investigators to study the impact of the open space environment on biological and biochemical test samples. Two Expose missions have been completed so far, designated as Expose-E (Rabbow et al. 2012) and Expose-R (Rabbow et al. this issue). One of the space-unique environmental factors offered by Expose is full-spectrum, ultraviolet (UV)-rich electromagnetic radiation from the Sun. This paper describes and analyses how on Expose-R, access of the test samples to Solar radiation degraded during space exposure in an unpredicted way. Several windows in front of the Sun-exposed test samples acquired a brown shade, resulting in a reduced transparency in visible light, UV and vacuum UV (VUV). Post-flight investigations revealed the discolouration to be caused by a homogenous film of cross-linked organic polymers at the inside of the windows. The chemical signature varied per sample carrier. No such films were found on windows from sealed, pressurized compartments, or on windows that had been kept out of the Sun. This suggests that volatile compounds originating from the interior of the Expose facility were cross-linked and photo-fixed by Solar irradiation at the rear side of the windows. The origin of the volatiles was not fully identified ; most probably there was a variety of sources involved including the biological test samples, adhesives, plastics and printed circuit boards. The outer surface of the windows (pointing into space) was chemically impacted as well, with a probable effect on the transparency in VUV. The reported analysis of the window contamination on Expose-R is expected to help the interpretation of the scientific results and offers possibilities to mitigate this problem on future missions – in particular Expose-R2, the direct successor of Expose-R
    corecore