71 research outputs found

    Surface alloying and iron selenide formation in Fe/Bi2Se3(0001) observed by x-ray absorption fine structure experiments

    Get PDF
    The atomic structure of ultrathin iron films deposited on the (0001) surface of the topological insulator Bi2Se3 is analyzed by surface x-ray absorption spectroscopy. Iron atoms deposited on a Bi2Se3 (0001) surface kept at 160 K substitute bismuth atoms within the first quintuple layer. Iron atoms are neighbored by six selenium atoms at a distance in the 2.4 Å range indicating substantial atomic relaxations. Mild annealing up to 520 K leads to the formation of α-FeSe, characterized by a local order extending up to the sixth shell (5.80 Å). Ab initio calculations predict a noncollinear magnetic ordering with a transition temperature of 3.5–10 K depending on the iron concentration and the number of the layers in which Fe is located

    Tuning the dirac point position in Bi2Se3(0001) via surface carbon doping

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Angular resolved photoemission spectroscopy in combination with ab initio calculations show that trace amounts of carbon doping of the Bi2Se3 surface allows the controlled shift of the Dirac point within the bulk band gap. In contrast to expectation, no Rashba-split two-dimensional electron gas states appear. This unique electronic modification is related to surface structural modification characterized by an expansion of the top Se-Bi spacing of approximate to 11% as evidenced by surface x-ray diffraction. Our results provide new ways to tune the surface band structure of topological insulators.This work is supported by the DFG through Priority Program “Topological Insulators (SPP 1666)” and by Science Development Foundation under the President of the Republic of Azerbaijan [Grant No. EIF-2011-1(3)-82/69/4-M-50].Peer Reviewe

    Geometric and electronic structure of the Cs-doped Bi2Se3(0001) surface

    Get PDF
    Using surface x-ray diffraction and scanning tunneling microscopy in combination with first-principles calculations, we have studied the geometric and electronic structure of Cs-deposited Bi2Se3(0001) surface kept at room temperature. Two samples were investigated: a single Bi2Se3 crystal, whose surface was Ar sputtered and then annealed at ∼500∘C for several minutes prior to Cs deposition, and a 13-nm-thick epitaxial Bi2Se3 film that was not subject to sputtering and was annealed only at ∼350∘C. In the first case, a considerable fraction of Cs atoms occupy top layer Se atoms sites both on the terraces and along the upper step edges where they form one-dimensional-like structures parallel to the step. In the second case, Cs atoms occupy the fcc hollow site positions. First-principles calculations reveal that Cs atoms prefer to occupy Se positions on the Bi2Se3(0001) surface only if vacancies are present, which might be created during the crystal growth or during the surface preparation process. Otherwise, Cs atoms prefer to be located in fcc hollow sites in agreement with the experimental finding for the MBE-grown sample

    Growth mode, magnetic and magneto-optical properties of pulsed-laser-deposited Au/Co/Au(111) trilayers

    Get PDF
    The growth mode, magnetic and magneto-optical properties of epitaxial Au/Co/Au(111) ultrathin trilayers grown by pulsed-laser deposition (PLD) under ultra-high vacuum are presented. Sapphire wafers buffered with a single-crystalline Mo(110) bilayer were used as substrates. Owing to PLD-induced interfacial intermixing at the lower Co/Au(111) interface, a layer-by-layer growth mode is promoted. Surprisingly, despite this intermixing, ferromagnetic behavior is found at room temperature for coverings starting at 1 atomic layer (AL). The films display perpendicular magnetization with anisotropy constants reduced by 50% compared to TD-grown or electrodeposited films, and with a coercivity more than one order of magnitude lower (\lesssim 5 mT). The magneto-optical (MO) response in the low Co thickness range is dominated by Au/Co interface contributions. For thicknesses starting at 3 AL Co, the MO response has a linear dependence with the Co thickness, indicative of a continuous-film-like MO behavior

    The timing of the demographic transition and economic growth

    No full text
    This research provides novel evidence that the time since the onset of the demographic transition affects growth dynamics across countries and within countries. This sheds light on a factor that has been neglected in the existing empirical growth literature

    Growth sequence and interface formation in the Fe/MgO/Fe(001) tunnel junction analyzed by surface x-ray diffraction

    No full text
    International audienceWe present a surface x-ray diffraction study of the interface geometric structure in the Fe/MgO/Fe(001) magnetic tunnel junction (MTJ). While the lower MgO/Fe(001) interface is characterized by a substoichiometric FeOx (x=0.6 +/- 0.1) layer in agreement with previous studies, growth of Fe on the MgO spacer and the upper Fe/MgO interface structure strongly depends on the preparation method. If 0.4 monolayers of Fe are initially deposited in ambient oxygen atmosphere (p=10(-7) mbar) followed by Fe deposition under ultrahigh-vacuum (UHV) conditions, structural coherence across the trilayer junction is observed. In this case, substoichiometric FeOx layers are present at both Fe/MgO interfaces corresponding to a symmetric MTJ structure. In contrast, lattice registry is not preserved if Fe deposition is carried out solely under UHV conditions. Our results might have important implications for the preparation of magnetic tunnel junctions optimized to achieve giant tunneling-magnetoresistance amplitudes

    Literatur

    No full text
    corecore