3,917 research outputs found

    Tests of sunspot number sequences: 2. Using geomagnetic and auroral data

    Get PDF
    We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC (Solar Influences Data Center) composite of Wolf/ZĂŒrich/International sunspot number [RISNv1], the group sunspot number [RG] by Hoyt and Schatten (Solar Phys., 181, 491, 1998), the new “backbone” group sunspot number [RBB] by Svalgaard and Schatten (Solar Phys., doi: 10.1007/s11207-015-0815-8, 2016), and the “corrected” sunspot number [RC] by Lockwood, Owens, and Barnard (J. Geophys. Res., 119, 5172, 2014). Each sunspot number is fitted with terrestrial observations, or parameters derived from terrestrial observations to be linearly proportional to sunspot number, over a 30-year calibration interval of 1982 - 2012. The fits are then used to compute test sequences, which extend further back in time and which are compared to RISNv1, RG, RBB, and RC. To study the long-term trends, comparisons are made using averages over whole solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) using the IDV(1d) and IDV geomagnetic indices (for 1845 - 2013) fitted over the calibration interval using the various sunspot numbers and the phase of the solar cycle; ii) from the open solar flux (OSF) generated for 1845 - 2013 from four pairings of geomagnetic indices by Lockwood et al. (Ann. Geophys., 32, 383, 2014) and analysed using the OSF continuity model of Solanki, SchĂŒssler, and Fligge (Nature, 408, 445, 2000) which employs a constant fractional OSF loss rate; iii) the same OSF data analysed using the OSF continuity model of Owens and Lockwood (J. Geophys. Res., 117, A04102, 2012) in which the fractional loss rate varies with the tilt of the heliospheric current sheet and hence with the phase of the solar cycle; iv) the occurrence frequency of low-latitude aurora for 1780 - 1980 from the survey of Legrand and Simon (Ann. Geophys., 5, 161, 1987). For all cases, RBB exceeds the test terrestrial series by an amount that increases as one goes back in time

    Sound-symbolism boosts novel word learning

    Get PDF
    The existence of sound-symbolism (or a non-arbitrary link between form and meaning) is well-attested. However, sound-symbolism has mostly been investigated with nonwords in forced choice tasks, neither of which are representative of natural language. This study uses ideophones, which are naturally occurring sound-symbolic words that depict sensory information, to investigate how sensitive Dutch speakers are to sound-symbolism in Japanese in a learning task. Participants were taught 2 sets of Japanese ideophones; 1 set with the ideophones’ real meanings in Dutch, the other set with their opposite meanings. In Experiment 1, participants learned the ideophones and their real meanings much better than the ideophones with their opposite meanings. Moreover, despite the learning rounds, participants were still able to guess the real meanings of the ideophones in a 2-alternative forced-choice test after they were informed of the manipulation. This shows that natural language sound-symbolism is robust beyond 2-alternative forced-choice paradigms and affects broader language processes such as word learning. In Experiment 2, participants learned regular Japanese adjectives with the same manipulation, and there was no difference between real and opposite conditions. This shows that natural language sound-symbolism is especially strong in ideophones, and that people learn words better when form and meaning match. The highlights of this study are as follows: (a) Dutch speakers learn real meanings of Japanese ideophones better than opposite meanings, (b) Dutch speakers accurately guess meanings of Japanese ideophones, (c) this sensitivity happens despite learning some opposite pairings, (d) no such learning effect exists for regular Japanese adjectives, and (e) this shows the importance of sound-symbolism in scaffolding language learnin

    Latitudinal gradients of cosmic rays and the polarity reversal of the heliospheric magnetic field: A preliminary evaluation

    Get PDF
    Within the statistical limits imposed by the currently available data and the noise inherent in the determination of the latitudinal gradient, no evidence for the expected change in the latitudinal gradient from pre-1980 to post-1980 epochs can be found. In addition, the rigidity dependence of the gradient appears to be the same in the two epochs. Thus, no evidence is found for a sensitivity of the latitudinal gradient to the polarity of the largescale heliospheric magnetic field such as has been predicted by models incorporating particle drifts

    Affective iconic words benefit from additional sound–meaning integration in the left amygdala

    Get PDF
    Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their non‐iconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language

    Tests of sunspot number sequences: 3. Effects of regression procedures on the calibration of historic sunspot data

    Get PDF
    We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data

    An assessment of sunspot number data composites over 1845-2014

    Get PDF
    New sunspot data composites, some of which are radically different in the character of their long-term variation, are evaluated over the interval 1845-2014. The method commonly used to calibrate historic sunspot data, relative to modern-day data, is “daisy-chaining”, whereby calibration is passed from one data subset to the neighbouring one, usually using regressions of the data subsets for the intervals of their overlap. Recent studies have illustrated serious pitfalls in these regressions and the resulting errors can be compounded by their repeated use as the data sequence is extended back in time. Hence the recent composite data series by Usoskin et al. (2016), RUEA, is a very important advance because it avoids regressions, daisy-chaining and other common, but invalid, assumptions: this is achieved by comparing the statistics of “active day” fractions to those for a single reference dataset. We study six sunspot data series including RUEA and the new “backbone” data series (RBB, recently generated by Svalgaard and Schatten, (2016) by employing both regression and daisy-chaining). We show that all six can be used with a continuity model to reproduce the main features of the open solar flux variation for 1845-2014, as reconstructed from geomagnetic activity data. However, some differences can be identified that are consistent with tests using a basket of other proxies for solar magnetic fields. Using data from a variety of sunspot observers, we illustrate problems with the method employed in generating RBB which cause it to increasingly overestimate sunspot numbers going back in time and we recommend using RUEA because it employs more robust procedures that avoid such problems
    • 

    corecore