2,774 research outputs found

    NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    Get PDF
    We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave++local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.Comment: 3 figures, supplementary material include

    Nonclassicality of pure two-qutrit entangled states

    Full text link
    We report an exhaustive numerical analysis of violations of local realism by two qutrits in all possible pure entangled states. In Bell type experiments we allow any pairs of local unitary U(3) transformations to define the measurement bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally entangled qubits, lead to the most noise-robust violations of local realism. The phenomenon seems to be even more pronounced for four and five dimensional systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio

    PocketMatch: A new algorithm to compare binding sites in protein structures

    Get PDF
    Background: Recognizing similarities and deriving relationships among protein molecules is a fundamental
requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of
the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison.

Results: Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant
manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless
combined with chemical nature of amino acids.

Conclusions: A new algorithm has been developed to compare binding sites in accurate, efficient and
high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that along
with the new alignment strategy used, it is sufficient to enable binding comparison with high sensitivity. Novel methodology has also been presented for validating the algorithm for accuracy and sensitivity with respect to geometry and chemical nature of the site. The method is also fast and takes about 1/250th second for one comparison on a single processor. A parallel version on BlueGene has also been implemented

    Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings

    Get PDF
    Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex

    The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes

    Get PDF
    Resuscitation-promoting factor (RPF) proteins reactivate stationary-phase cultures of (G+C)-rich Gram-positive bacteria including the causative agent of tuberculosis, Mycobacterium tuberculosis. We report the solution structure of the RPF domain from M. tuberculosis Rv1009 (RpfB) solved by heteronuclear multidimensional NMR. Structural homology with various glycoside hydrolases suggested that RpfB cleaved oligosaccharides. Biochemical studies indicate that a conserved active site glutamate is important for resuscitation activity. These data, as well as the presence of a clear binding pocket for a large molecule, indicate that oligosaccharide cleavage is probably the signal for revival from dormancy

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    Molecular Modeling of the Interaction Between Stem Cell Peptide and Immune Receptor in Plants

    Get PDF
    © Springer Science+Business Media, LLC, part of Springer Nature 2020. Molecular docking enables comprehensive exploration of interactions between chemical moieties and proteins. Modeling and docking approaches are useful to determine the three-dimensional (3D) structure of experimentally uncrystallized proteins and subsequently their interactions with various inhibitors and activators or peptides. Here, we describe a protocol for carrying out molecular modeling and docking of stem cell peptide CLV3p on plant innate immune receptor FLS2

    Retinoid-Binding Proteins: Similar Protein Architectures Bind Similar Ligands via Completely Different Ways

    Get PDF
    Background: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP) and epididymal retinoic acid binding protein (ERABP) carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs) and cellular retinoic acid-binding proteins (CRABPs) carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. Methodology/Principal Findings: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. Conclusions/Significance: Our results reveal the differences in the binding modes between the different retinoid-bindin

    Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society
    corecore