512 research outputs found
Density Perturbations and the Cosmological Constant from Inflationary Landscapes
An anthropic understanding of the cosmological constant requires that the
vacuum energy at late time scans from one patch of the universe to another. If
the vacuum energy during inflation also scans, the various patches of the
universe acquire exponentially differing volumes. In a generic landscape with
slow-roll inflation, we find that this gives a steeply varying probability
distribution for the normalization of the primordial density perturbations,
resulting in an exponentially small fraction of observers measuring the COBE
value of 10^-5. Inflationary landscapes should avoid this "\sigma problem", and
we explore features that can allow them to do that. One possibility is that,
prior to slow-roll inflation, the probability distribution for vacua is
extremely sharply peaked, selecting essentially a single anthropically allowed
vacuum. Such a selection could occur in theories of eternal inflation. A second
possibility is that the inflationary landscape has a special property: although
scanning leads to patches with volumes that differ exponentially, the value of
the density perturbation does not vary under this scanning. This second case is
preferred over the first, partly because a flat inflaton potential can result
from anthropic selection, and partly because the anthropic selection of a small
cosmological constant is more successful.Comment: 23 page
What have we already learned from the CMB?
The COBE satellite, and the DMR experiment in particular, was extraordinarily
successful. However, the DMR results were announced about 7 years ago, during
which time a great deal more has been learned about anisotropies in the Cosmic
Microwave Background (CMB). The CMB experiments currently being designed and
built, including long-duration balloons, interferometers, and two space
missions, promise to address several fundamental cosmological issues. We
present our evaluation of what we already know, what we are beginning to learn
now, and what the future may bring.Comment: 20 pages, 3 figures. Changes to match version accepted by PAS
Classical aspects of Hawking radiation verified in analogue gravity experiment
There is an analogy between the propagation of fields on a curved spacetime
and shallow water waves in an open channel flow. By placing a streamlined
obstacle into an open channel flow we create a region of high velocity over the
obstacle that can include wave horizons. Long (shallow water) waves propagating
upstream towards this region are blocked and converted into short (deep water)
waves. This is the analogue of the stimulated Hawking emission by a white hole
(the time inverse of a black hole). The measurements of amplitudes of the
converted waves demonstrate that they appear in pairs and are classically
correlated; the spectra of the conversion process is described by a
Boltzmann-distribution; and the Boltzmann-distribution is determined by the
determined by the change in flow across the white hole horizon.Comment: 17 pages, 10 figures; draft of a chapter submitted to the proceedings
of the IX'th SIGRAV graduate school: Analogue Gravity, Lake Como, Italy, May
201
Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems
We explore the quantum aspects of an elastic bar supported at both ends and
subject to compression. If strain rather than stress is held fixed, the system
remains stable beyond the buckling instability, supporting two potential
minima. The classical equilibrium transverse displacement is analogous to a
Ginsburg-Landau order parameter, with strain playing the role of temperature.
We calculate the quantum fluctuations about the classical value as a function
of strain. Excitation energies and quantum fluctuation amplitudes are compared
for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter
Laser Cooling of Optically Trapped Molecules
Calcium monofluoride (CaF) molecules are loaded into an optical dipole trap
(ODT) and subsequently laser cooled within the trap. Starting with
magneto-optical trapping, we sub-Doppler cool CaF and then load CaF
molecules into an ODT. Enhanced loading by a factor of five is obtained when
sub-Doppler cooling light and trapping light are on simultaneously. For trapped
molecules, we directly observe efficient sub-Doppler cooling to a temperature
of . The trapped molecular density of
cm is an order of magnitude greater than in the initial sub-Doppler
cooled sample. The trap lifetime of 750(40) ms is dominated by background gas
collisions.Comment: 5 pages, 5 figure
Glutathione S-transferase 8-8 expression is lower in alcohol-preferring than in alcohol-nonpreferring rats
OBJECTIVE:
A primary focus of alcohol research is to provide novel targets for alcohol treatment by identifying genes that predispose individuals to drink alcohol. Animal models of alcoholism developed by selective breeding are invaluable tools to elucidate both the genetic nature and the underlying biological mechanisms that contribute to alcohol dependence. These selected lines (high alcohol preferring and low alcohol preferring) display phenotypic and genetic differences that can be studied to further our understanding of alcohol preference and related genetic traits. By combining molecular techniques, genetic and physiological factors that underlie the cause of alcoholism can be identified.
METHODS:
Total gene expression analysis was used to identify genes that are differentially expressed in specific brain regions between alcohol-naive, inbred alcohol-preferring (iP) and -nonpreferring (iNP) rats. Quantitative reverse transcriptase-polymerase chain reaction, in situ hybridization, Western blot, and sequence analysis were used to further characterize rat glutathione S-transferase 8-8 (rGST 8-8).
RESULTS:
Lower expression of rGST 8-8 mRNA was observed in discrete brain regions of iP compared with iNP animals, and these expression differences were confirmed. To determine additional expression patterns of rGST 8-8, we used in situ hybridization. Rat GST 8-8 was highly expressed in hippocampus, the choroid plexus of the dorsal third ventricle and the lateral ventricle, and ependymal cells along the dorsal third ventricle and the third ventricle. Western blot analysis showed that rGST 8-8 protein levels were lower in the hippocampus and the amygdala of iP compared with iNP. A silent single-nucleotide polymorphism in the coding region and three single-nucleotide polymorphisms in the 3'-UTR were identified in the rGST 8-8 cDNA.
CONCLUSION:
There is regional variation of rGST 8-8 expression in the brain, at both the mRNA and protein level, and the iP strain has lower innate rGST 8-8 levels than the iNP strain in discrete brain regions
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
We present the design and performance of the multi-object fiber spectrographs
for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon
Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999
on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the
spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II
surveys, enabling a wide variety of Galactic and extra-galactic science
including the first observation of baryon acoustic oscillations in 2005. The
spectrographs were upgraded in 2009 and are currently in use for BOSS, the
flagship survey of the third-generation SDSS-III project. BOSS will measure
redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha
absorption of 160,000 high redshift quasars over 10,000 square degrees of sky,
making percent level measurements of the absolute cosmic distance scale of the
Universe and placing tight constraints on the equation of state of dark energy.
The twin multi-object fiber spectrographs utilize a simple optical layout
with reflective collimators, gratings, all-refractive cameras, and
state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in
two channels over a bandpass covering the near ultraviolet to the near
infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven
heritage, the spectrographs were upgraded for BOSS with volume-phase
holographic gratings and modern CCD detectors, improving the peak throughput by
nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000
nm, and increasing the number of fibers from 640 to 1000 per exposure. In this
paper we describe the original SDSS spectrograph design and the upgrades
implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and
accepted by AJ. Provides background for the instrument responsible for SDSS
and BOSS spectra. 4th in a series of survey technical papers released in
Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral
Classification), and arXiv:1208.0022 (BOSS Overview
The RMS survey: near-IR spectroscopy of massive young stellar objects
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (∼80 per cent) of the targets are YSOs, of which 131 are massive YSOs (L BOL > 5×10 3 L ⊙ , M > 8 M ⊙ ). This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper, we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7 < A V < 114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Brγ, H 2 , fluorescent Fe ii, CO bandhead, [Fe ii] and He i 2-1 1 S- 1 P, in order of frequency of occurrence. In total, ∼40 per cent of the YSOs display either fluorescent Fe ii 1.6878 μm or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ∼60 per cent of the sources exhibit [Fe ii] or H 2 emission, indicating the presence of an outflow. Three quarters of all sources have Brγ in emission. A good correlation with bolometric luminosity was observed for both the Brγ and H 2 emission line strengths, covering 1 < L BOL < 3.5 × 10 5 L ⊙ . This suggests that the emission mechanism for these lines is the same for low-, intermediate- and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
- …