167 research outputs found

    Statistical analysis of cutting forces while machining nodular cast iron

    Get PDF
    Call number: LD2668 .T4 1964 K43Master of Scienc

    The limits of social class in explaining ethnic gaps in educational attainment

    Get PDF
    This paper reports an analysis of the educational attainment and progress between age 11 and age 14 of over 14,500 students from the nationally representative Longitudinal Study of Young People in England (LSYPE). The mean attainment gap in national tests at age 14 between White British and several ethnic minority groups were large, more than three times the size of the gender gap, but at the same time only about one-third of the size of the social class gap. Socio-economic variables could account for the attainment gaps for Black African, Pakistani and Bangladeshi students, but not for Black Caribbean students. Further controls for parental and student attitudes, expectations and behaviours indicated minority ethnic groups were on average more advantaged on these measures than White British students, but this was not reflected proportionately in their levels of attainment. Black Caribbean students were distinctive as the only group making less progress than White British students between age 11 and 14 and this could not be accounted for by any of the measured contextual variables. Possible explanations for the White British-Black Caribbean gap are considered

    Optical and microstructural characterization of Er3+^{3+} doped epitaxial cerium oxide on silicon

    Full text link
    Rare-earth ion dopants in solid-state hosts are ideal candidates for quantum communication technologies such as quantum memory, due to the intrinsic spin-photon interface of the rare-earth ion combined with the integration methods available in the solid-state. Erbium-doped cerium oxide (Er:CeO2_2) is a particularly promising platform for such a quantum memory, as it combines the telecom-wavelength (~1.5 μ\mum) 4f-4f transition of erbium, a predicted long electron spin coherence time supported by CeO2_2, and is also near lattice-matched to silicon for heteroepitaxial growth. In this work, we report on the epitaxial growth of Er:CeO2_2 thin films on silicon using molecular beam epitaxy (MBE), with controlled erbium concentration down to 2 parts per million (ppm). We carry out a detailed microstructural study to verify the CeO2_2 host structure, and characterize the spin and optical properties of the embedded Er3+^{3+} ions. In the 2-3 ppm Er regime, we identify EPR linewidths of 245(1) MHz, optical inhomogeneous linewidths of 9.5(2) GHz, optical excited state lifetimes of 3.5(1) ms, and spectral diffusion-limited homogenoeus linewidths as narrow as 4.8(3) MHz in the as-grown material. We test annealing of the Er:CeO2_2 films up to 900 deg C, which yields modest narrowing of the inhomogeneous linewidth by 20% and extension of the excited state lifetime by 40%. We have also studied the variation of the optical properties as a function of Er doping and find that the results are consistent with the trends expected from inter-dopant charge interactions.Comment: 15 pages, 6 figures (including supplemental information

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    Nucleic Acid, Antibody, and Virus Culture Methods to Detect Xenotropic MLV-Related Virus in Human Blood Samples

    Get PDF
    The MLV-related retrovirus, XMRV, was recently identified and reported to be associated with both prostate cancer and chronic fatigue syndrome. At the National Cancer Institute-Frederick, MD (NCI-Frederick), we developed highly sensitive methods to detect XMRV nucleic acids, antibodies, and replication competent virus. Analysis of XMRV-spiked samples and/or specimens from two pigtail macaques experimentally inoculated with 22Rv1 cell-derived XMRV confirmed the ability of the assays used to detect XMRV RNA and DNA, and culture isolatable virus when present, along with XMRV reactive antibody responses. Using these assays, we did not detect evidence of XMRV in blood samples (N = 134) or prostate specimens (N = 19) from two independent cohorts of patients with prostate cancer. Previous studies detected XMRV in prostate tissues. In the present study, we primarily investigated the levels of XMRV in blood plasma samples collected from patients with prostate cancer. These results demonstrate that while XMRV-related assays developed at the NCI-Frederick can readily measure XMRV nucleic acids, antibodies, and replication competent virus, no evidence of XMRV was found in the blood of patients with prostate cancer

    The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties.

    Get PDF
    BACKGROUND/OBJECTIVES: The purpose of this study was to determine whether circulating pro-inflammatory cytokines, elevated with increased fat mass and ageing, were associated with muscle properties in young and older people with variable adiposity. SUBJECTS/METHODS: Seventy-five young (18-49 yrs) and 67 older (50-80 yrs) healthy, untrained men and women (BMI: 17-49 kg/m(2)) performed isometric and isokinetic plantar flexor maximum voluntary contractions (MVCs). Volume (Vm), fascicle pennation angle (FPA), and physiological cross-sectional area (PCSA) of the gastrocnemius medialis (GM) muscle were measured using ultrasonography. Voluntary muscle activation (VA) was assessed using electrical stimulation. GM specific force was calculated as GM fascicle force/PCSA. Percentage body fat (BF%), body fat mass (BFM), and lean mass (BLM) were assessed using dual-energy X-ray absorptiometry. Serum concentration of 12 cytokines was measured using multiplex luminometry. RESULTS: Despite greater Vm, FPA, and PCSA (P0.05), while IL-8 correlated with VA in older but not young adults (r⩾0.378, P⩽0.027). TNF-alpha correlated with MVC, lean mass, GM FPA and maximum force in older adults (r⩾0.458; P⩽0.048). CONCLUSIONS: The age- and adiposity-dependent relationships found here provide evidence that circulating pro-inflammatory cytokines may play different roles in muscle remodelling according to the age and adiposity of the individual.International Journal of Obesity accepted article preview online, 29 August 2016. doi:10.1038/ijo.2016.151

    Protocol for Nearly Full-Length Sequencing of HIV-1 RNA from Plasma

    Get PDF
    Nearly full-length genome sequencing of HIV-1 using peripheral blood mononuclear cells (PBMC) DNA as a template for PCR is now a relatively routine laboratory procedure. However, this has not been the case when using virion RNA as the template and this has made full genome analysis of circulating viruses difficult. Therefore, a well-developed procedure for sequencing of full-length HIV-1 RNA directly from plasma was needed. Plasma from U.S. donors representing a range of viral loads (VL) was used to develop the assay. RNA was extracted from plasma and reverse-transcribed. Two or three overlapping regions were PCR amplified to cover the entire viral genome and sequenced for verification. The success of the procedure was sensitive to VL but was routinely successful for VL greater than 105 and the rate declined in proportion to the VL. While the two-amplicon strategy had an advantage of increasing the possibility of amplifying a single species of HIV-1, the three-amplicon strategy was more successful in amplifying samples with low viral loads. This protocol provides a useful tool for molecular analysis to understand the HIV epidemic and pathogenesis, as well as diagnosis, therapy and future vaccine strategies
    corecore