139 research outputs found

    Nucleon Form Factors in a Covariant Diquark-Quark Model

    Get PDF
    In a model where constituent quarks and diquarks interact through quark exchange the Bethe-Salpeter equation in ladder approximation for the nucleon is solved. Quark and diquark confinement is effectively parametrized by choosing appropriately modified propagators. The coupling to external currents is implemented via nontrivial vertex functions for quarks and diquarks to ensure gauge invariance at the constituent level. Nucleon matrix elements are evaluated in a generalised impulse approximation, and electromagnetic, pionic and axial form factors are calculated.Comment: 33 Pages, 10 figures, modfied elsart.sty include

    Nucleon form factors and a nonpointlike diquark

    Get PDF
    Nucleon form factors are calculated on q^2 in [0,3] GeV^2 using an Ansatz for the nucleon's Fadde'ev amplitude motivated by quark-diquark solutions of the relativistic Fadde'ev equation. Only the scalar diquark is retained, and it and the quark are confined. A good description of the data requires a nonpointlike diquark correlation with an electromagnetic radius of 0.8 r_pi. The composite, nonpointlike nature of the diquark is crucial. It provides for diquark-breakup terms that are of greater importance than the diquark photon absorption contribution.Comment: 5 pages, REVTEX, epsfig, 3 figure

    Bound q2qˉ2q^2\bar q^2 states in a constituent quark model

    Full text link
    We consider the existence of bound systems consisting of two quarks and two antiquarks (q2qˉ2q^2\bar q^2) within the framework of a constituent quark model. The underlying quark dynamics is described by a linear confinement potential and an effective q2qˉ2q^2\bar q^2 interaction which has its origin in instanton effects of QCD. We calculate the spectra and examine the internal structure of the states found.Comment: 11 pages, needs epsf.st

    Physiology of stretch-mediated hypertrophy and strength increases: A narrative review

    Get PDF
    Increasing muscle strength and cross-sectional area is of crucial importance to improve or maintain physical function in musculoskeletal rehabilitation and sports performance. Decreases in muscular performance are experienced in phases of reduced physical activity or immobilization. These decrements highlight the need for alternative, easily accessible training regimens for a sedentary population to improve rehabilitation and injury prevention routines. Commonly, muscle hypertrophy and strength increases are associated with resistance training, typically performed in a training facility. Mechanical tension, which is usually induced with resistance machines and devices, is known to be an important factor that stimulates the underlying signaling pathways to enhance protein synthesis. Findings from animal studies suggest an alternative means to induce mechanical tension to enhance protein synthesis, and therefore muscle hypertrophy by inducing high-volume stretching. Thus, this narrative review discusses mechanical tension-induced physiological adaptations and their impact on muscle hypertrophy and strength gains. Furthermore, research addressing stretch-induced hypertrophy is critically analyzed. Derived from animal research, the stretching literature exploring the impact of static stretching on morphological and functional adaptations was reviewed and critically discussed. No studies have investigated the underlying physiological mechanisms in humans yet, and thus the underlying mechanisms remain speculative and must be discussed in the light of animal research. However, studies that reported functional and morphological increases in humans commonly used stretching durations of \u3e 30 min per session of the plantar flexors, indicating the importance of high stretching volume, if the aim is to increase muscle mass and maximum strength. Therefore, the practical applicability seems limited to settings without access to resistance training (e.g., in an immobilized state at the start of rehabilitation), as resistance training seems to be more time efficient. Nevertheless, further research is needed to generate evidence in different human populations (athletes, sedentary individuals, and rehabilitation patients) and to quantify stretching intensity

    Electromagnetic form factors of the nucleon in a covariant diquark model

    Get PDF
    We present a simple covariant constituent diquark-quark model for the nucleon. The nucleon is assumed to be composed of a scalar diquark and a quark which interact via a quark exchange. Starting from the Bethe-Salpeter equation, the instantaneous approximation leads to a diquark-quark Salpeter equation. In the Mandelstam formalism, the electromagnetic form factors of the nucleon are calculated for momentum transfers up to q^2 = - 3 \; (\mbox{GeV/c})^2. A remarkable description of the experimental data is obtained. Especially, the model gives nearly the right values for the proton and (negative) neutron charge radii, and a qualitative description of the magnetic form factors.Comment: 17 pages, revtex, 8 figures in additional fil

    A covariant diquark-quark model of the nucleon in the Salpeter approach

    Get PDF
    We develop a rather simple, formally covariant quark-diquark model of the nucleon. The nucleon is treated as a bound state of a constituent quark and a diquark interacting via a quark exchange. We include both scalar and axial-vector diquarks. The underlying Bethe-Salpeter equation is transformed into a pair of coupled Salpeter equations. The electromagnetic form factors of the nucleon are calculated in the Mandelstam formalism. We obtain a very good description of all electromagnetic form factors for momentum transfers up to -3 (GeV/c)^2.Comment: 17 pages, REVTeX, 10 figures (ps and eps) include

    Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus

    Get PDF
    Influenza A viruses are a threat to humans due to their ability to cross species barriers, as illustrated by the 2009 H1N1v pandemic and sporadic H5N1 transmissions. Interspecies transmission requires adaptation of the viral polymerase to importin-α, a cellular protein that mediates transport into the nucleus where transcription and replication of the viral genome takes place. In this study, we analysed replication, host specificity and pathogenicity of avian and mammalian influenza viruses, in importin-α-silenced cells and importin-α-knockout mice, to understand the role of individual importin-α isoforms in adaptation. For efficient virus replication, the polymerase subunit PB2 and the nucleoprotein (NP) of avian viruses required importin-α3, whereas PB2 and NP of mammalian viruses showed importin-α7 specificity. H1N1v replication depended on both, importin-α3 and -α7, suggesting ongoing adaptation of this virus. Thus, differences in importin-α specificity are determinants of host range underlining the importance of the nuclear envelope in interspecies transmission

    Cytotoxic effect of sodium hypochlorite (NaClO) in apical cells of onion roots (Allium cepa L.)

    Get PDF
    Páginas 97-104.El hipoclorito de sodio (NaClO), es un compuesto químico altamente tóxico y ampliamente utilizado por sus propiedades desinfectantes. Una de las especies vegetales más usadas para la detección de diferentes tipos de cambios genéticos causados por sustancias químicas es Allium cepa L. mediante la cual se hacen pruebas para la vigilancia del medio ambiente. El objetivo de esta investigación fue evaluar el efecto citotóxico del hipoclorito de sodio (NaClO) en células apicales de raíces de cebolla (Allium cepa L.). Se prepararon cinco soluciones de hipoclorito de sodio a diferentes concentraciones más una solución control con tres réplicas para cada tratamiento; se midió el crecimiento de las raíces durante 3 días, se cortaron los ápices sumergiéndose en ácido clorhídrico, posteriormente fueron teñidos con Aceto-Orceina y se observaron al microscopio; se calculó el índice mitótico (IM) y se observaron las anomalías celulares (cromosómicas). Se realizó un análisis de varianza (ANOVA) y prueba de rangos múltiples mediante el método de diferencia mínima significativa (LSD). Los resultados mostraron que no existe una diferencia estadísticamente significativa entre los tratamientos (P>0,05). La concentración donde se presentó un mayor IM fue de 1 ppm. Se evidenciaron las anomalías celulares: en anafase, evidenciando puentes entre cromosomas, hipercromasia, lesiones nucleares y rompimiento de cromosomas en anafase y metafase. Los resultados evidenciaron que Allium cepa es una especie que ofrece un modelo experimental para evaluar el efecto citotóxico, en este caso del hipoclorito de sodio, el cual generó anomalías celulares (cromosómicas) en todas las concentraciones.ABSTRACT: (NaClO) sodium hypochlorite is a highly toxic chemical compound widely used because of its disinfectant properties. One of the most commonly used plants to detect different types of genetic changes caused by chemical substances is Allium cepa L., in tests for environmental monitoring. The objective of this research was to evaluate the cytotoxic effect of sodium hypochlorite (NaClO) in apical cells of onion roots (Allium strain L.). Five sodium hypochlorite solutions were prepared at different concentrations, in addition to a control solution, with three replications for each treatment; for 3 days, the growth of the roots was measured; the apices were cut submerging them into hydrochloric acid, subsequently dyed with Aceto-Orcein and were observed under a microscope; the mitotic index (MI) was calculated and the cell anomalies were observed (chromosomal). An analysis of variance (ANOVA) and multiple range tests using the Least Significant Difference method (LSD) were performed. The results showed that there was not a statistically significant difference between the treatments (P0.05). The concentration with the highest MI was 1 ppm. The following cellular abnormalities were evidenced: bridge between chromosomes in anaphase, chromatin, nuclear injuries, chromosome breakage in anaphase and metaphase. The results showed that Allium cepa L. is a species that offers an experimental model to evaluate the cytotoxic effect, in this case sodium hypochlorite, which generated cellular abnormalities (chromosomal) in all concentrations.Bibliografía: página 104.Artículo revisado por pares

    A transient homotypic interaction model for the influenza A virus NS1 protein effector domain

    Get PDF
    Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins
    • …
    corecore