19,335 research outputs found

    Entanglement genesis by ancilla-based parity measurement in 2D circuit QED

    Get PDF
    We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measurement demonstrate that the meter is intrinsically quantum non-demolition. Separate interaction and measurement steps allow commencing subsequent data qubit operations in parallel with ancilla measurement, offering time savings over continuous schemes.Comment: 5 pages, 4 figures; supplemental material with 5 figure

    Ontwikkeling biologische teelt en trek van witlof

    Get PDF
    In samenwerking tussen Proeftuin Zwaagdijk en PPO Lelystad werd in de jaren 2000-2002 een onderzoeksproject uitgevoerd met als doel de teeltzekerheid, opbrengst en kwaliteit van biologische witlof te vergroten. Onderzoek werd toegespitst op bemesting en bestrijding van onkruid tijdens de teelt van witlofpennen. In de trek werden verschillende soorten biologische meststoffen en rassen vergeleken

    Stabilized hot electron bolometer heterodyne receiver at 2.5 THz

    Get PDF
    We report on a method to stabilize a hot electron bolometer (HEB) mixer at 2.5 THz. The technique utilizes feedback control of the local oscillator (LO) laser power by means of a swing-arm actuator placed in the optical beam path. We demonstrate that this technique yields a factor of 50 improvement in the spectroscopic Allan variance time which is shown to be over 30 s in a 12 MHz noise fluctuation bandwidth. Furthermore, broadband signal direct detection effects may be minimized by this technique. The technique is versatile and can be applied to practically any local oscillator at any frequency

    Reversing quantum trajectories with analog feedback

    Get PDF
    We demonstrate the active suppression of transmon qubit dephasing induced by dispersive measurement, using parametric amplification and analog feedback. By real-time processing of the homodyne record, the feedback controller reverts the stochastic quantum phase kick imparted by the measurement on the qubit. The feedback operation matches a model of quantum trajectories with measurement efficiency η~≈0.5\tilde{\eta} \approx 0.5, consistent with the result obtained by postselection. We overcome the bandwidth limitations of the amplification chain by numerically optimizing the signal processing in the feedback loop and provide a theoretical model explaining the optimization result.Comment: 5 pages, 4 figures, and Supplementary Information (7 figures

    Direct microwave measurement of Andreev-bound-state dynamics in a proximitized semiconducting nanowire

    Full text link
    The modern understanding of the Josephson effect in mesosopic devices derives from the physics of Andreev bound states, fermionic modes that are localized in a superconducting weak link. Recently, Josephson junctions constructed using semiconducting nanowires have led to the realization of superconducting qubits with gate-tunable Josephson energies. We have used a microwave circuit QED architecture to detect Andreev bound states in such a gate-tunable junction based on an aluminum-proximitized InAs nanowire. We demonstrate coherent manipulation of these bound states, and track the bound-state fermion parity in real time. Individual parity-switching events due to non-equilibrium quasiparticles are observed with a characteristic timescale Tparity=160±10 ΌsT_\mathrm{parity} = 160\pm 10~\mathrm{\mu s}. The TparityT_\mathrm{parity} of a topological nanowire junction sets a lower bound on the bandwidth required for control of Majorana bound states

    European Collaboration in Ocean Cores Science: roots, highlights, off-springs and vision

    Get PDF
    July 4th, 1947, exactly 75 years after the legendary cruise of H.M.S. Challenger and at a time when ocean science seemed to definitively shift to the shores of Massachusetts and California, the Swedish 5-masted schooner and school-ship Albatross set sail from Göteborg for a 15-months ambitious voyage of circumnavigation of the world oceans. Staffed with cadets and scientists and headed by Hans Pettersson, the Albatross had on board a revolutionary tool: Kullenberg’s piston corer, a 30m-long device which had already allowed the recovery of a 20m-long sediment core. Previously, the Meteor had recovered cores of a maximal length of 0.90m (1925), while in the thirties C.S. Piggot of the Carnegie Institution had “shot” cores up to 3m length in the North-Atlantic with a gun-like device. Sedimentological, geochemical, mineralogical, micropalaeontological analyses and radio-active dating would be carried out not only in Swedish institutes, but also in Vienna, Göttingen, Hanover, Wageningen, Ghent, Paris, London and La Jolla, in the true spirit of the data exploitation scheme which had shaped the success of the cruise of the Challenger. The stage was set for palaeo-environmental research on long sediment cores, archives of past climate and oceans.In the mid-sixties, ocean cores science takes a giant leap with the Deep Sea Drilling Program (DSDP). 20 years after the Albatross, in the fall of 1968, the Glomar Challenger sails from Dakar for the South Atlantic to verify the hypothesis of seafloor spreading and plate tectonics. Europe would join the Ocean Drilling Program (ODP), which set sail in 1984, subsequent to the International Phase of Ocean Drilling (IPOD, 1975-1983). For the first time, the European Science Foundation moves in, providing to numerous smaller European partners a platform of participation in ODP through ECOD, the European Consortium for Ocean Drilling.Some 50 years after the Albatross, the ‘Calypso’ piston corer on board of R/V Marion Dufresne would set the record of piston coring length, with an unrivaled core of over 64m length. The IMAGES programme would boost palaeoclimate research worldwide.At the turn of the century, ECORD - an off-spring of ECOD which had left the parental house - took the lead of the Mission Specific Platform (MSP) scheme in the Integrated Ocean Drilling Program (IODP), pushing frontiers of ocean drilling to extreme environments such as the poles and coral reefs. While not directly involved in the operational aspects, ESF soon took a prominent place in the supporting science, not the least through the EUROCORES programme and research networks.At the onset of the 21st century, while IODP and the international ocean drilling and coring community define a new strategy for post-2013 ocean coring science, Europe moves in with a new revolutionary tool, the MeBo (Meeresboden BohrgerĂ€t), a remotely operated seabed drilling tool capable of drilling and coring from a variety of large vessels. EUROFLEETS provides new opportunities for coordinated naval operations for ocean science. And in parallel, Europe develops the plans for an ambitious drilling platform for the Arctic: Aurora Borealis.Any lucid vision on the future of Ocean Cores Science, which plays a key role in the unraveling of the dynamics of our planet, will build upon the lessons of the past, reflect upon the strengths and weaknesses of the present, and ride upon the excitement of Europe’s young generation, driver of the future

    Probing dynamics of an electron-spin ensemble via a superconducting resonator

    Get PDF
    We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit mode- and temperature-dependent coupling of hyperfine-split sub-ensembles to the resonator. Temperature-independent spin linewidth and relaxation time suggest that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble by resonant pumping of another indicates fast cross-relaxation compared to spin diffusion, with implications on use of sub-ensembles as independent quantum memories.Comment: 5 pages, 5 figures, and Supplementary Information (2 figures

    In-Plane Magnetic Field Induced Anisotropy of 2D Fermi Contours and the Field Dependent Cyclotron Mass

    Full text link
    The electronic structure of a 2D gas subjected to a tilted magnetic field, with a strong component parallel to the GaAs/AlGaAs interface and a weak component oriented perpendicularly, is studied theoretically. It is shown that the parallel field component modifies the originally circular shape of a Fermi contour while the perpendicular component drive an electron by the Lorentz force along a Fermi line with a cyclotron frequency given by its shape. The corresponding cyclotron effective mass is calculated self-consistently for several concentrations of 2D carriers as a function of the in-plane magnetic field. The possibility to detect its field-induced deviations from the zero field value experimentally is discussed.Comment: written in LaTeX, 9 pages, 4 figures (6 pages) in 1 PS file (compressed and uuencoded) available on request from [email protected], SM-JU-93-
    • 

    corecore