1,117 research outputs found

    Technology for large-scale translation of clinical practice guidelines : a pilot study of the performance of a hybrid human and computer-assisted approach

    Get PDF
    Background: The construction of EBMPracticeNet, a national electronic point-of-care information platform in Belgium, was initiated in 2011 to optimize quality of care by promoting evidence-based decision-making. The project involved, among other tasks, the translation of 940 EBM Guidelines of Duodecim Medical Publications from English into Dutch and French. Considering the scale of the translation process, it was decided to make use of computer-aided translation performed by certificated translators with limited expertise in medical translation. Our consortium used a hybrid approach, involving a human translator supported by a translation memory (using SDL Trados Studio), terminology recognition (using SDL Multiterm termbases) from medical termbases and support from online machine translation. This has resulted in a validated translation memory which is now in use for the translation of new and updated guidelines. Objective: The objective of this study was to evaluate the performance of the hybrid human and computer-assisted approach in comparison with translation unsupported by translation memory and terminology recognition. A comparison was also made with the translation efficiency of an expert medical translator. Methods: We conducted a pilot trial in which two sets of 30 new and 30 updated guidelines were randomized to one of three groups. Comparable guidelines were translated (a) by certificated junior translators without medical specialization using the hybrid method (b) by an experienced medical translator without this support and (c) by the same junior translators without the support of the validated translation memory. A medical proofreader who was blinded for the translation procedure, evaluated the translated guidelines for acceptability and adequacy. Translation speed was measured by recording translation and post-editing time. The Human Translation Edit Rate was calculated as a metric to evaluate the quality of the translation. A further evaluation was made of translation acceptability and adequacy. Results: The average number of words per guideline was 1,195 and the mean total translation time was 100.2 min/1,000 words. No meaningful differences were found in the translation speed for new guidelines. The translation of updated guidelines was 59 min/1,000 words faster (95% CI 2-115; P=.044) in the computer-aided group. Revisions due to terminology accounted for one third of the overall revisions by the medical proofreader. Conclusions: Use of the hybrid human and computer-aided translation by a non-expert translator makes the translation of updates of clinical practice guidelines faster and cheaper because of the benefits of translation memory. For the translation of new guidelines there was no apparent benefit in comparison with the efficiency of translation unsupported by translation memory (whether by an expert or non-expert translator

    Perfect-information games with lower-semicontinuous payoffs

    Get PDF
    We prove that every multiplayer perfect-information game with bounded and lower-semicontinuous payoffs admits a subgame-perfect epsilon-equilibrium in pure strategies. This result complements Example 3 in Solan and Vieille [Solan, E., N. Vieille. 2003. Deterministic multi-player Dynkin games. J. Math. Econom. 39 911-929], which shows that a subgame-perfect epsilon-equilibrium in pure strategies need not exist when the payoffs are not lower-semicontinuous. In addition, if the range of payoffs is finite, we characterize in the form of a Folk Theorem the set of all plays and payoffs that are induced by subgame-perfect 0-equilibria in pure strategies

    Pharmacokinetics of Pamidronate in Patients With Bone Metastases

    Get PDF
    Background: Pamidronate is a secondgeneration bisphosphonate used in the treatment of tumor-induced hypercalcemia and in the management of bone metastases from breast cancer, myeloma, or prostate cancer. The pharmacokinetics of pamidronate is unknown in cancer patients. Purpose: To determine the influence of the rate of administration and of bone metabolism, we studied the pharmacokinetics of pamidronate at three different infusion rates in 37 patients with bone metastases. Methods: Three groups of 11-14 patients were given 60 mg pamidronate as an intravenous infusion over a period of 1, 4, or 24 hours. Urine samples were collected in the three groups of patients. Plasma samples were obtained only in the 1-hour infusion group. The assay of pamidronate in plasma and urine was performed by high-performance liquid chromatography with fluorescence detection after the derivatization of pamidronate with fluorescamine. Results: The body retention (BR) at 0-24 hours of pamidronate represented 60%-70% of the administered dose and was not significantly modified by the infusion rate. In particular, the BR at 0-24 hours was not reduced at the fastest infusion rate. Among patients, a threefold variability in BR at 0-24 hours occurred, which was related directly to the number of bone metastases and, to some extent, to creatinine clearance. At 60 mg/hour, the plasma kinetics followed a multiexponential course characterized by a short distribution phase. The mean (±SD) half-life of the distribution phase was 0.8 hour (±0.3), the mean (±SD) of the area under the curve for drug concentration in plasma × time at 0-24 hours was 22.0 × 8.8 μmol/L × hours, and the mean (±SD) of the maximum plasma concentration was 9.7 μmol/L (±3.2). Pharmacokinetic variables remained unchanged after repeated infusions applied to four patients. Clinically, the three infusion rates were equally well tolerated without significant toxicity. Conclusions: The 1-hour infusion rate could be proposed as kinetically appropriate for the administration of pamidronate to patients with metastatic bone diseases. [J Natl Cancer Inst 84: 788-792, 1992

    Electronic Structure Calculations with LDA+DMFT

    Full text link
    The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method are (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.Comment: 21 pages, 7 figures. Chapter of "Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View", eds. V. Bach and L. Delle Site, Springer 201

    Borel games with lower-semi-continuous payoffs

    Get PDF
    We prove that every two-player non-zero-sum Borel game with lower-semi-continuous payoffs admits a subgame-perfect ε-equilibrium. This result complements Example 3 in Solan and Vieille (2003), which shows that a subgame-perfect ε-equilibrium need not exists when the payoffs are not lower-semi-continuous.

    Probing local relaxation of cold atoms in optical superlattices

    Get PDF
    In the study of relaxation processes in coherent non-equilibrium dynamics of quenched quantum systems, ultracold atoms in optical superlattices with periodicity two provide a very fruitful test ground. In this work, we consider the dynamics of a particular, experimentally accessible initial state prepared in a superlattice structure evolving under a Bose-Hubbard Hamiltonian in the entire range of interaction strengths, further investigating the issues raised in Ref. [Phys. Rev. Lett. 101, 063001 (2008)]. We investigate the relaxation dynamics analytically in the non interacting and hard core bosonic limits, deriving explicit expressions for the dynamics of certain correlation functions, and numerically for finite interaction strengths using the time-dependent density-matrix renormalization (t-DMRG) approach. We can identify signatures of local relaxation that can be accessed experimentally with present technology. While the global system preserves the information about the initial condition, locally the system relaxes to the state having maximum entropy respecting the constraints of the initial condition. For finite interaction strengths and finite times, the relaxation dynamics contains signatures of the relaxation dynamics of both the non-interacting and hard core bosonic limits.Comment: 18 pages RevTex, 20 figures, final version (problem with figures resolved

    Nonadiabatic Dynamics of Ultracold Fermions in Optical Superlattices

    Full text link
    We study the time-dependent dynamical properties of two-component ultracold fermions in a one-dimensional optical superlattice by applying the adaptive time-dependent density matrix renormalization group to a repulsive Hubbard model with an alternating superlattice potential. We clarify how the time evolution of local quantities occurs when the superlattice potential is suddenly changed to a normal one. For a Mott-type insulating state at quarter filling, the time evolution exhibits a profile similar to that expected for bosonic atoms, where correlation effects are less important. On the other hand, for a band-type insulating state at half filling, the strong repulsive interaction induces an unusual pairing of fermions, resulting in some striking properties in time evolution, such as a paired fermion co-tunneling process and the suppression of local spin moments. We further address the effect of a confining potential, which causes spatial confinement of the paired fermions.Comment: 4 pages, 5 figure

    Pharmacokinetics of pamidronate in patients with bone metastases

    Get PDF
    BACKGROUND: Pamidronate is a second-generation bisphosphonate used in the treatment of tumor-induced hypercalcemia and in the management of bone metastases from breast cancer, myeloma, or prostate cancer. The pharmacokinetics of pamidronate is unknown in cancer patients. PURPOSE: To determine the influence of the rate of administration and of bone metabolism, we studied the pharmacokinetics of pamidronate at three different infusion rates in 37 patients with bone metastases. METHODS: Three groups of 11-14 patients were given 60 mg pamidronate as an intravenous infusion over a period of 1, 4, or 24 hours. Urine samples were collected in the three groups of patients. Plasma samples were obtained only in the 1-hour infusion group. The assay of pamidronate in plasma and urine was performed by high-performance liquid chromatography with fluorescence detection after the derivatization of pamidronate with fluorescamine. RESULTS: The body retention (BR) at 0-24 hours of pamidronate represented 60%-70% of the administered dose and was not significantly modified by the infusion rate. In particular, the BR at 0-24 hours was not reduced at the fastest infusion rate. Among patients, a threefold variability in BR at 0-24 hours occurred, which was related directly to the number of bone metastases and, to some extent, to creatinine clearance. At 60 mg/hour, the plasma kinetics followed a multiexponential course characterized by a short distribution phase. The mean (+/- SD) half-life of the distribution phase was 0.8 hour (+/- 0.3), the mean (+/- SD) of the area under the curve for drug concentration in plasma x time at 0-24 hours was 22.0 +/- 8.8 mumol/L x hours, and the mean (+/- SD) of the maximum plasma concentration was 9.7 mumol/L (+/- 3.2). Pharmacokinetic variables remained unchanged after repeated infusions applied to four patients. Clinically, the three infusion rates were equally well tolerated without significant toxicity. CONCLUSIONS: The 1-hour infusion rate could be proposed as kinetically appropriate for the administration of pamidronate to patients with metastatic bone diseases

    An investigation of the impact of data breach severity on the readability of mandatory data breach notification letters: evidence from U.S. firms

    Get PDF
    The aim of this article is to investigate the impact of data breach severity on the readability of mandatory data breach notification letters. Using a content analysis approach to determine data breach severity attributes (measured by the total number of breached records, type of data accessed, the source of the data breach, and how the data were used), in conjunction with readability measures (reading complexity, numerical intensity, length of letter, word size, and unique words), 512 data breach incidents from 281 U.S. firms across the 2012–2015 period were examined. The results indicate that data breach severity has a positive impact on reading complexity, length of letter, word size, and unique words, and a negative impact on numerical terms. Interpreting the results collectively through the lens of impression management, it can be inferred that business managers may be attempting to obfuscate bad news associated with high data breach severity incidents by manipulating syntactical features of the data breach notification letters in a way that makes the message difficult for individuals to comprehend. The study contributes to the information studies and impression management behavior literatures by analyzing linguistic cues in notifications following a data breach incident
    corecore