273 research outputs found

    Beyond mobile phone displays: Flat panel display technology for biomedical applications

    Get PDF
    Organ-on-Chips (OoCs) have emerged as a human-specific experimental platform for preclinical research and therapeutics testing that will reduce the cost of pre-clinical drug development, provide better physiological relevance and replace animal testing. Yet, the lack of standardization and cost-effective fabrication technologies can hamper wide-spread adoption of OoCs. In this work we validate the use of flat panel display (FPD) technology as an enabling and cost-effective technology platform for biomedical applications by demonstrating facile integration of key OoC modules like microfluidics and micro electrode arrays (MEAs) in the standardized 96-well plate format. Individual and integrated modules were tested for their biological applicability in OoCs. For microelectrode arrays we demonstrate 90–95% confluency, 3 days after cell seeding and >70% of the initial mitochondrial cell activity for microfluidic devices. Thus highlighting the biocompatibility of these modules fabricated using FPD technology. Furthermore, we provide two examples of monolithically integrated microfluidics and microelectronics, i.e. integrated electronic valves and integrated MEAs, that showcase the strength of FPD technology applied to biomedical device fabrication. Finally, the merits and opportunities provided by FPD technology are discussed through examples of advanced structures and functionalities that are unique to this enabling platform

    Theory of Electric Field-Induced Photoluminescence Quenching in Disordered Molecular Solids

    Full text link
    The dynamics of excitons in disordered molecular solids is studied theoretically, taking into account migration between different sites, recombination, and dissociation into free charge carriers in the presence of an electric field. The theory is applied to interpret the results of electric field-induced photoluminescence (PL) quenching experiments on molecularly doped polymers by Deussen et al. [Chem. Phys. 207, 147 (1996)]. Using an intermolecular dissociation mechanism, the dependence of the PL quenching on the electric field strength and the dopant concentration, and the time evolution of the transient PL quenching can be well described. The results constitute additional proof of the distinct exciton dissociation mechanisms in conjugated polymer blends and molecularly doped polymers.Comment: 4 pages RevTeX, 3 Postscript figure

    Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains

    Full text link
    In this paper we present results of large-scale correlated calculations of triplet photoinduced absorption (PA) spectrum of oligomers of poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In particular, the high-energy features in the triplet PA spectrum of oligo-PPVs are the focus of this study, which, so far, have not been investigated theoretically, or experimentally. The calculations were performed using the Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken into account by means of multi-reference singles-doubles configuration interaction procedure (MRSDCI), without neglecting any molecular orbitals. The computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting of alternating peaks of high and low intensities. The predicted higher energy features of the triplet spectrum can be tested in future experiments. Additionally, theoretical estimates of exciton binding energy are also presented.Comment: To appear in Phys. Rev.

    Universal three-dimensional crosslinker for all-photopatterned electronics

    Get PDF
    All-solution processing of large-area organic electronics requires multiple steps of patterning and stacking of various device components. Here, we report the fabrication of highly integrated arrays of polymer thin-film transistors and logic gates entirely through a series of solution processes. The fabrication is done using a three-dimensional crosslinker in tetrahedral geometry containing four photocrosslinkable azide moieties, referred to as 4Bx. 4Bx can be mixed with a variety of solution-processable electronic materials (polymer semiconductors, polymer insulators, and metal nanoparticles) and generate crosslinked network under exposure to UV. Fully crosslinked network film can be formed even at an unprecedentedly small loading, which enables preserving the inherent electrical and structural characteristics of host material. Because the crosslinked electronic component layers are strongly resistant to chemical solvents, micropatterning the layers at high resolution as well as stacking the layers on top of each other by series of solution processing steps is possible

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.

    Get PDF
    Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events
    • …
    corecore