4,094 research outputs found

    The role of contacts in molecular electronics

    Get PDF
    Molecular electronic devices are the upmost destiny of the miniaturization trend of electronic components. Although not yet reproducible on large scale, molecular devices are since recently subject of intense studies both experimentally and theoretically, which agree in pointing out the extreme sensitivity of such devices on the nature and quality of the contacts. This chapter intends to provide a general theoretical framework for modelling electronic transport at the molecular scale by describing the implementation of a hybrid method based on Green function theory and density functional algorithms. In order to show the presence of contact-dependent features in the molecular conductance, we discuss three archetypal molecular devices, which are intended to focus on the importance of the different sub-parts of a molecular two-terminal setup.Comment: 17 pages, 8 figure

    Different intermittency for longitudinal and transversal turbulent fluctuations

    Get PDF
    Scaling exponents of the longitudinal and transversal velocity structure functions in numerical Navier-Stokes turbulence simulations with Taylor-Reynolds numbers up to \rel = 110 are determined by the extended self similarity method. We find significant differences in the degree of intermittency: For the sixth moments the scaling corrections to the classical Kolmogorov expectations are δξ6L=0.21±0.01\delta\xi_6^L= -0.21 \pm 0.01 and \dx_6^T= -0.43 \pm 0.01, respectively, independent of \rel. Also the generalized extended self similarity exponents \rho_{p,q} = \dx_p/\dx_q differ significantly for the longitudinal and transversal structure functions. Within the She-Leveque model this means that longitudinal and transversal fluctuations obey different types of hierarchies of the moments. Moreover, the She-Leveque model hierarchy parameters βL\beta^L and βT\beta^T show small but significant dependences on the order of the moment.Comment: 20 pages, 10 eps-figures, to appear in Physics of Fluids, December 199

    Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    Full text link
    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed.Comment: 15 pages, 2 figures, submitted to J. Phys.

    Transitions and Probes in Turbulent Helium

    Get PDF
    Previous analysis of a Paris turbulence experiment \cite{zoc94,tab95} shows a transition at the Taylor Reynolds number \rel \approx 700. Here correlation function data is analyzed which gives further evidence for this transition. It is seen in both the power spectrum and in structure function measurements. Two possible explanations may be offered for this observed transition: that it is intrinsic to the turbulence flow in this closed box experiment or that it is an effect of a change in the flow around the anemometer. We particularly examine a pair of ``probe effects''. The first is a thermal boundary layer which does exist about the probe and does limit the probe response, particularly at high frequencies. Arguments based on simulations of the response and upon observations of dissipation suggests that this effect is only crucial beyond \rel\approx 2000. The second effect is produced by vortex shedding behind the probe. This has been seen to produce a large modification in some of the power spectra for large \rel. It might also complicate the interpretation of the experimental results. However, there seems to be a remaining range of data for \rel < 1300 uncomplicated by these effects, and which are thus suggestive of an intrinsic transition.Comment: uuencoded .ps files. submitted to PRE. 12 figures are sent upon request to jane wang ([email protected]

    First Order Phase Transition in a Reaction-Diffusion Model With Open Boundary: The Yang-Lee Theory Approach

    Full text link
    A coagulation-decoagulation model is introduced on a chain of length L with open boundary. The model consists of one species of particles which diffuse, coagulate and decoagulate preferentially in the leftward direction. They are also injected and extracted from the left boundary with different rates. We will show that on a specific plane in the space of parameters, the steady state weights can be calculated exactly using a matrix product method. The model exhibits a first-order phase transition between a low-density and a high-density phase. The density profile of the particles in each phase is obtained both analytically and using the Monte Carlo Simulation. The two-point density-density correlation function in each phase has also been calculated. By applying the Yang-Lee theory we can predict the same phase diagram for the model. This model is further evidence for the applicability of the Yang-Lee theory in the non-equilibrium statistical mechanics context.Comment: 10 Pages, 3 Figures, To appear in Journal of Physics A: Mathematical and Genera

    Tunneling in a cavity

    Full text link
    The mechanism of coherent destruction of tunneling found by Grossmann et al. [Phys. Rev. Lett. 67, 516 (1991)] is studied from the viewpoint of quantum optics by considering the photon statistics of a single mode cavity field which is strongly coupled to a two-level tunneling system (TS). As a function of the interaction time between TS and cavity the photon statistics displays the tunneling dynamics. In the semi-classical limit of high photon occupation number nn, coherent destruction of tunneling is exhibited in a slowing down of an amplitude modulation for certain parameter ratios of the field. The phenomenon is explained as arising from interference between displaced number states in phase space which survives the large nn limit due to identical n1/2n^{-1/2} scaling between orbit width and displacement.Comment: 4 pages Revtex, 2 PS-figures, appears in The Physical Review

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.

    Coherent transport in a two-electron quantum dot molecule

    Get PDF
    We investigate the dynamics of two interacting electrons confined to a pair of coupled quantum dots driven by an external AC field. By numerically integrating the two-electron Schroedinger equation in time, we find that for certain values of the strength and frequency of the AC field we can cause the electrons to be localised within the same dot, in spite of the Coulomb repulsion between them. Reducing the system to an effective two-site model of Hubbard type and applying Floquet theory leads to a detailed understanding of this effect. This demonstrates the possibility of using appropriate AC fields to manipulate entangled states in mesoscopic devices on extremely short timescales, which is an essential component of practical schemes for quantum information processing.Comment: 4 pages, 3 figures; the section dealing with the perturbative treatment of the Floquet states has been substantially expanded to make it easier to follo

    Switching the current through molecular wires

    Full text link
    The influence of Gaussian laser pulses on the transport through molecular wires is investigated within a tight-binding model for spinless electrons including correlation. Motivated by the phenomenon of coherent destruction of tunneling for monochromatic laser fields, situations are studied in which the maximum amplitude of the electric field fulfills the conditions for the destructive quantum effect. It is shown that, as for monochromatic laser pulses, the average current through the wire can be suppressed. For parameters of the model, which do not show a net current without any optical field, a Gaussian laser pulse can establish a temporary current. In addition, the effect of electron correlation on the current is investigated.Comment: 8 pages, 6 figure
    corecore