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Transitions and probes in turbulent helium
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Previous analysis of a helium turbulence experiment by Zocchiet al. and Tabelinget al. @Phys. Rev. E50,
3693~1994!; 53, 1613~1996!# shows a transition at the Taylor Reynolds number Rel'700. Here correlation
function data are analyzed which gives further evidence for this transition. It is seen in both the power
spectrum and in structure function measurements. Two possible explanations may be offered for this observed
transition: that it is intrinsic to the turbulence flow in this closed box experiment or that it is an effect of a
change in the flow around the anemometer. We particularly examine a pair of ‘‘probe effects.’’ The first is a
thermal boundary layer which does exist about the probe and does limit the probe response, particularly at high
frequencies. Arguments based on simulations of the response and upon observations of dissipation suggest that
this effect is only crucial beyond Rel'2000. The second effect is produced by vortex shedding behind the
probe. This has been seen to produce a large modification in some of the power spectra for large Rel . It might
also complicate the interpretation of the experimental results for higher values of the Reynolds number.
However, there seems to be a remaining range of data for Rel,1300 uncomplicated by these effects, and
which are thus suggestive of an intrinsic transition.@S1063-651X~97!04602-3#

PACS number~s!: 47.27.2i, 47.80.1v
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I. INTRODUCTION

Recent velocity measurements in highly turbulent heli
gas flow by Tabelinget al. @1–6# reveal a transition in the
turbulent behavior. The results of Refs.@1–5# show that be-
yond some crossover Taylor Reynolds number Rel'700 the
flatness of the velocity derivatives ceases to increase. Su
transitional behavior has never been reported in open fl
@7,8#, while earlier results on closed flows, also in heliu
@9–11#, have also revealed the existence of a transition
large Reynolds numbers. In our discussions we would dis
guish between two classes of experiments:~1! A group of
experiments on thermally driven turbulence in helium, co
ducted by Libchaber and co-workers~see Refs.@9–11#!. We
shall collectively describe these experiments as TTH, and~2!
the other group of experiments include studies of she
driven turbulence in helium~STH!. This set includes Refs
@1–6# which have been done by Tabeling and co-worke
For the STH experiments, it has been argued that the cr
over signals the instability of vortex tubes~worms! @5#; one
may speculate also whether it signals the onset of Kolm
orov 1941~K41! turbulence@13#.

This paper is devoted to a further analysis of this cro
over, including two main questions:~1! Can the transition be
seen in the further analysis of correlation functions?~2! Can
it possibly be understood as some kind of probe effect?

To discuss the former issue we analyze structure funct
Dn(r )5^@u(x1r )2u(x)#n& of order n52,4,6 and the en-
ergy spectrum. We try to superpose structure functions
spectra for different Reynolds numbers Re. Indeed, the

*Electronic address: leo@control.uchicago.edu
†Electronic address: lohse@cs.uchicago.edu
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perpositions show that there aredifferentforms of the curves
above and below the transition, but within each group
forms of the curves are roughly the same. The shifts nec
sary to superpose such curves give a measurement of c
acteristic length or frequency scales in each measurem
These scales and their dependence upon the Reynolds
ber will be analyzed in this paper because they are impor
to give insight into the physical origin of the transition.

The central point of this paper is to examine the possi
ity that the apparent transition might be a reflection of pro
defects. We study two different specific probe effects
some detail.

There are two likely sources of difficulties in the measu
ment, one being that the probe might have insufficient ti
resolution, the other being that it might be too large.
study the first possibility, we follow the analysis of Gros
mann and Lohse@14#, who showed the possibility of the los
of probe sensitivity in temperature measurements
Rayleigh-Bénard flow @15,9#. This probe effect occurs as
result of delays and averaging related to thermal diffus
through the partially stagnant gas about the probe. In
STH experiments considered in the present paper, the p
is a hot wire anemometer, which works by heating the g
around it. Once again, the probe measures tempera
changes and can possibly have poor temporal response.
is the first probe effect we analyze in this paper. The sec
kind of effect we consider involves what happens when
probe size and the dissipative scale becomes compar
One effect which can arise is vortex shedding behind
probe. In ‘‘ordinary’’ hot wire anemometry~i.e., cylindrical
probes working in air!, the operating conditions are such th
even at large~overall! Reynolds numbers, there is no vorte
shedding behind the sensors@16#. In the STH experiments
the Reynolds number based upon probe size is large eno
so that it is reasonable to ask about vortex shedding. T
2672 © 1997 The American Physical Society
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55 2673TRANSITIONS AND PROBES IN TURBULENT HELIUM
issue has been partially addressed in the past@2,4#; the gen-
eral conclusion is that if the vortex shedding frequency
outside the turbulent spectrum, no big perturbation is
pected. In the opposite case, the vortex shedding mode
couple with the turbulent fluctuations, and perturb the m
surement. Our analysis compares these scales and disc
the implication of the results.

The paper is organized in the following way. In Sec.
we show evidence for a change in behavior at high Reyno
numbers. Section III is devoted to looking at probe effe
which might partially explain the observed change in beh
ior. In Sec. IV, additional evidence is drawn from the me
sured Reynolds number dependence of characteristic sc
In Sec. V we demonstrate by a simple estimate that ine
subrange~ISR! quantities, such as scaling corrections
probability distribution functions~PDFs! of velocity differ-
ences in that range, are hardly effected by the transit
Section VI is devoted to conclusions.

II. EVIDENCE FOR TRANSITION

A. The flatness

The velocity measurements of the STH experiments
done in low temperature helium gas, following the idea
the TTH experiments@17,15,9# which were built upon the
experiments of Threifall@18#. The flow is driven by two
counterrotating disks of radiusR. Two different cells are
used: Cell 1 withR53.2 cm @3,1,2# and cell 2 withR510
cm @1,2#. The velocity anemometer~‘‘probe’’ ! of sized57
mm is placed far enough from the boundary layers. The R
nolds number is defined as Re5VR2/n. The angular veloc-
ity V of the disks, which is about 1–10 Hz, remains abo
the same for all measurements, whereas Re is varied
changing the helium pressure and thus the viscosityn.

The transition was first observed@2# in the properties of
the flatnessF and the skewness of the velocity derivative.
this paper, we focus upon the flatness since the transiti
phenomenon was less visible in the skewness. The flatne
defined to be

F5 lim
r→0

D4~r !

@D2~r !#2
.

Figure 1 shows a series of flatness measurements for
small and large cells, plotted as a function of Rel . This
Reynolds number is experimentally defined in terms of
rms fluctuations in the velocity@1#. Figure 1 incorporates
unpublished data recently obtained with the smaller cell
rough estimate for the experimental uncertainty in the fl
ness is615%. At a lower Reynolds number, the flatnessF
increases with increasing Rel . Then, at a transition value o
the Reynolds number, it seems to reach a peak and then
off at a higher Rel . The peak flatness is located at Rl
comprised between 550 and 750 for the small and large c
~see Fig. 1 and also Fig. 5 of@2#!. These peak values ar
identified as the Rel number for some kind of crossover o
transition.

The nature of the transition reflects itself in the Rel de-
pendence of characteristic length scales. A possible choic
the length scale of the transition from the viscous subra
~VSR! to the inertial subrange~ISR! in the velocity structure
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functionD3(r ). In Ref. @1# the length scalel in f was defined
as the value for which the ratio2D3(r )/r is equal to 70% of
its maximum value and we will adopt this definition here
The classical expectation is that a length like this will de
crease as Re23/4. The experimental result shows the expecte
behavior below a transitional Reynolds number but appe
to saturate at higher Reynolds numbers.~See Fig. 5 in Ref.
@1#.! It was also found~see @1#! that the scaling range of
apparent ISR behavior seems to saturate and may e
shrink beyond the transition Reynolds number.

B. Dissipation spectra and structure functions

The previous work mostly focused on the scalings of th
viscous dissipation. Here we seek further evidence of t
transition and its nature. We first analyze the energy dissi
tion spectraI (k)5k2E(k) as a function of the Reynolds
number.@Here,E(k) is the usual power spectrum, obtaine
as a function of frequency and then translated into a dep
dence upon wave vectors through its mean velocity follow
ing the Taylor hypothesis.# We find that the curves for the
dissipation spectra fall into two groups: There is one sha
which holds for all curves below the transition and anoth
shape which governs the curves above the transition.

The spectra are calculated over 16 million points, corr
sponding to 100–1000 large eddy turnover times for ea
graph. The data is then divided into about 29 sequencies of
215 points. The power spectra are computed for each
quence and averaged over different segments. A Hann
window is used in computing the spectra@19#. To collapse
the spectra, we determine the peak of the dissipationI p and
its corresponding frequencykp following the approach of
Ref. @20#. We then rescale the wave number and the dissip
tion spectrum bykp , and I p , respectively. The rescaled
spectra are then plotted in Fig. 2. Figure 2~a! shows the col-
lapse for different Reynolds numbers below the transitio
whereas Fig. 2~b! for those above the transition. Figure 2~c!
shows a comparison of the shapes for the two scaling curv
The solid line corresponds to a general fitting form take
from @20,21#

FIG. 1. The flatness of the velocity derivatives is plotted again
Rel . Results for the small cell are given as the black points and
the large one as the empty circles. This same convention is use
the later figures. Each point shown here is the average of th
experiments performed at the same Rel , in the same cell, with the
same probe.
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2674 55EMSELLEM, KADANOFF, LOHSE, TABELING, AND WANG
I ~k!5I ~kp!F S kkpD
25/3

1aS kkpD
2bG S kkpD

2

e2mk/kp, ~1!

where the fitting parameters area50.7, b521, andm is
determined to make the peak occur atk/kp51. In this fit, the
second summand reflects the bottleneck energy pileup a
borderline between inertial subrange and viscous subra
@22#. Note the good agreement between the fitting form
and the data holds above the transition, but not below. Fig
2 then shows a situation in which the dissipation spec
changes at the transitional Reynolds number.

The relative shifts in the logarithmic scales define una
biguously the relative length and energy scale in the syst
In Sec. IV, we shall study the Reynolds number depende
of the length scales in comparison with different theories
what might cause the apparent transition.

To further test the existence of two groups of scali
functions, we examine different structure functionsDn(r ) in

FIG. 2. Collapse of dissipation spectra. Parts~a! and~b!, respec-
tively, show overlays of different dissipation spectra for Rel below
and above the transitional value. Part~c! shows the comparison o
two spectra, one from above and one from below.
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the same spirit. First we look atD2. SinceD2 and the power
spectra contain the same information, the results onD2
should provide us a double check on the previous finding.
collapse the different curves ofD2 versusr , we use the same
method as applied to the dissipation spectra. We find a c
acteristic length for each plot by finding the point of th
log-log plot at which the slope has a predetermined cons
value. To probe the VSR-ISR transition range, we choose
constant slope to be 1.5, i.e., a value in between the V
slope 2 and the ISR slope of approximately 2/3. The meth
corresponds to finding the maximum ofD2(r )/r

1.5. We call
this scalermax

(2) and defineD2,max5D2@rmax
(2) #. In Fig. 3 we

plot D2(r )/r
1.5 vs r for various Rel , normalized so that the

maximum always is at~1,1!. Once again, we find the dat
separate into two groups: one for Rel,800, and another for
Rel.1500. The relative shifts in horizontal and vertical d
rections define the scale in length and velocity. We return
the length scale in Sec. IV.

We apply the same method to studyD4(r ) andD6(r ).
We again collapse them by finding specific values of
slope in the log-log plot. In these cases, the chosen slo
are, respectively, 1.5 and 2.5. For the fourth order struct
function ~Fig. 4!, we see clear separation of two group
Again, the separation occurs between Rel5800 and
Rel51500. However, Fig. 5 for the sixth order structu
functions does not show such separations. The failure of
ing two groups inD6 somewhat weakens the argument for
simple transition.

Thus we have shown some additional evidence for
existence of a transition in the STH experiment. The str
ture functionsD2(r ), D4(r ), and the spectrum indicate
simple transition whereas higher order structure functio
suggest a broadened transition.

It is clear that there is some kind of change or transit
centered at Rel of about 700. How does one explain th
observed transition? Can it possibly be a probe effect?
turn to those issues in Sec. III.

III. PROBE EFFECTS

In this section, we shall obtain a variety of order of ma
nitude estimates. To make these estimates, we will hav
compare a characteristic dissipative frequency in the sys
to the characteristic inverse times produced by the probe
self. We estimate the dissipative frequency
vd5U/(10h) in agreement with the spectral measureme
of Zocchiet al. @1#. This frequency is then the inverse of th
time it takes for a disturbance of size 10h to move past the
probe. Here, we use the classically expected@23# relation
between the Kolmogorov lengthh and the dissipation rate
e. The definition of the length ish5n3/4/e1/4, with h having
the approximate value

h

R
530 Re23/4. ~2!

In our last steps of analysis we shall express our result
terms of the Taylor-Reynolds number which according to
measurements of Ref.@1# is connected to the Reynolds num
ber by
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55 2675TRANSITIONS AND PROBES IN TURBULENT HELIUM
Rel51.57 Re1/2. ~3!

From Eq.~2! we obtain

vd5
U

10h
5

n

R2

1

300
Re7/4. ~4!

Here and below, we do our estimates by setting the Pra
number, defined as the ratio of viscosity and the therm
diffusivity, equal to unity.

A. The thermal boundary layer

The experimental results@1# on the crossover length sca
l in f in the third order structure function resemble those
duced from the temperature measurements in the highly
bulent Rayleigh-Be´nard flow@9#: Beyond a critical Rayleigh
number Ra'1011, the scaling range of the temperatu

FIG. 3. The curvesD2(r )/r
1.5 vs r group into two groups, one

for Reynolds numbers below the transition, one for Reynolds n
bers above the transition. We have shifted the curves so tha
maximum is at~1,1!. As in Fig. 2, this figure also contrasts th
relatively unvarying behavior above and below the transition w
the somewhat larger change which occurs across the transitio
this and in the next two figures, we use open symbols to indicate
flows below transition, and solids above the transition.

FIG. 4. D4(r )/r
1.5 vs r ; again, both axes are normalized so th

the maximum is at~1,1!. As in Fig. 3 this figure contrasts th
behavior within the region above and below the transition with
change which occurs across the transition.
tl
al

-
r-

power spectrum becomes smaller for increasing Ra and
measured dissipative power shows a weaker Ra increas
below the transition. Grossmann and Lohse@14# suggested
that this apparent transition might really be an effect cau
by the probe used to measure temperatures. The thick
d of the boundary layer around the probe sets a diffus
time scale

vd
215d2/k, ~5!

wherek is the heat diffusivity. Beyondvd , the measured
spectral strength will be reduced. Ifvd is smaller than the
UV spectral cutoffvd , this will affect the UV side of the
inertial range betweenvd andvd . This explanation of the
observed high Rayleigh number data as a probe effect is
unproven, but it has certainly never been ruled out.

One might wonder whether a similar effect would affe
the results of the STH experiments. Note that the simp
estimate for the value of Rel at the transition of the TTH
experiment is (1011)1/4'700. By some accident~?!! this is
the same number as that observed in the STH experime

Why is heat diffusion relevant for the velocity measur
ments? The anemometer is heated by an electrical cur
The faster the fluid is passing by the probe, the more po
is needed to keep the probe at some constant tempera
which is larger than the temperature of the surroundings.
probe gauge curve power vs velocity is given by King’s la
and is experimentally known@3#.

What velocities does the probe measure? Itcannotbe the
velocity directly at the probe, as there will be a visco
boundary layer of thicknessd around it in which the velocity
is very small. The heat generated in the probe has to di
sively penetrate this layer. Thus the probe measures the
locity of the helium which is a distanced away from the
probe. The length scaled again sets the diffusive time sca
described by Eq.~5!.

Our problem is to now estimate the important value~s! of
d and then to see whether thevd thereby generated provide
an important cutoff on the responsiveness of the probe.

This has been carried out in two different ways. One of
~V.E.! has done numerical simulations of the flow past t
probe, assuming a laminar time-independent flow@24#. The
calculation must be done numerically since the Reyno
numbers of the probe

Reprobe5
Ud

n
5Re

d

R
~6!

-
he

In
e

t

e

FIG. 5. D6(r )/r
2.5 vs r , normalized as in the two previous fig

ures. In contrast to Figs. 3 and 4, a separation of the curves into
groups is not obvious.
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2676 55EMSELLEM, KADANOFF, LOHSE, TABELING, AND WANG
is of the order of 40 at the observed transition point. He
d57 mm is the size of the probe. A steady state is reache
which the flow is constant and in which there is a const
flow of heat away from the probe. The calculated flow
then perturbed with a sudden upstream rise in tempera
The probe responds and the important result is that the p
response time is shorter than any time resolved in the exp
ment. The conclusion is that one can assume that the the
response of the probe is perfect.

The next question is: How large is the viscous bound
layer d? There are, in fact, two answers. If the probe Re
nolds number is of order 10 to 100, then there are regi
with a thin viscous boundary layer in which the flow com
very close to the cylinder. According to the Blasius theo
this boundary layer thickness should be

d}d/AReprobe. ~7!

The flow behind the probe produces a much larger region
stagnant fluid at rest, with a thickness comparable to the
size. Thus we have also

d}d. ~8!

The frequency produced by these lengths via Eq.~5! will
only matter if they are smaller than or of the order of t
Kolmogorov cutoff of Eq.~4!. Since these frequencies diffe
by a factor of the probe Reynolds number they are qu
different. The conditions they generate are different also
the lengthd matters, then the frequency cutoff will bother u
whenever the Reynolds number Re obeys

Re.F300SRd D 2G4/7. ~9!

Conversely if the size of the Blasius boundary layer matte
we will get the less stringent condition

Re.~300R/d!4/3 ~10!

for the Reynolds number at which the thermal bound
layer of the probe becomes important.

These answers are quite different. If the important d
tance isd, we get from Eq.~9! an estimate of the critica
Taylor-Reynolds number, Rel , as'1000 for the small cell
and'2000 for the large cell. The experiment measure
crossover Rel of order 700. These results are perilous
close.

On the other hand, if it is appropriate to use the Blas
length then Eq.~10! gives a much larger critical Reynold
number, in fact, a critical value of Rel which is greater than
104 and which cannot be realized in the experiment.

So which length should we use? To see the answer no
that the experiment measures the heat flow out of the pr
This heat flow is much larger in regions in which the boun
ary layer is thinner. Thus, for larger Reprobe the important
regions are the ones which have the Blasius effect and
thinned by a factor of (Reprobe)

21/2. The simulation@24#
fully supports this point of view. Note also that this line
argument does not apply to the TTH experiment@15,9# and
its analysis@14#. In the TTH experiment, the probe measur
the average temperature in its environment. Regions of
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thick boundary layer are as important as thin ones. The
fore, relatively sluggish regions can effect the outcome.
contrast, in the STH experiments, only the most respons
regions matter.

B. The dissipation rate test

One can construct a direct test of the probe respons
ness. The energy dissipation rate—denoted bye—can be
measured in two different ways@1#. One involves a measure
ment in the inertial subrange and determines a quan
which we calle ISR. The other is a dissipative measureme
and determineseVSR. Both quantities can be expressed
dimensionless form by writingc as the ratio ofe to U3/R
whereU5VR is the large scale velocity. In this way on
finds the two different~Reynolds number dependent@25#!
ratios

ce,ISR5e ISR
R

U3 and ce,VSR5eVSR
R

U3 . ~11!

One can finde ISR by using the fact that the third order stru
ture functionD (3)(r ) obeys the Kolmogorov structure equ
tion @23#

D ~3!~r !524e ISRr /5. ~12!

When Tabeling’s group carries out their ISR measurem
their results agree with the expected spatial scaling and
enable them to constructce,ISR. In addition, the energy dis
sipation ratee is measured by a method which uses the v
cous subrange,eVSR, namely, by determininge from the
spectrumE(k) as

eVSR515nE
0

`

dk k2E~k!. ~13!

Here, full isotropization has been assumed. Strictly speak
eVSR is only based on̂(]1u1)

2& which is ~via Taylor’s hy-
pothesis@26#! the only experimentally accessible contrib
tion to the strain tensor] iuj . This determination ofe then
gives the other dimensionless constant,ce,VSR. In Fig. 6 we
show the ratioce,ISR/ce,VSR. If the probe response was cu
off at high frequencies, one would expectce,VSR to be sub-
stantially smaller thance,ISR, i.e., the ratio to be larger tha
1. The data shows no support for that hypothesis. So we m
conclude that, within experimental error~which is rather sub-
stantial!, the high frequency response of the probe is sa
factory.

C. Vortex shedding behind the probe

In this section, we discuss the effect of finite probe size
spatial resolution. We focus particularly upon the effects
vortex shedding from the probe.

Zocchi et al. @1# have observed a series of peaks at
high end of the power spectra. The exact origin of the
peaks is unknown. Possible sources are vortex shedding
brations of the probe and its support. In more recent exp
ments, the fiber has been strained at a tensile strength
times larger than before and the peaks have mostly dis
peared. This indicates that some of the observed peaks
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55 2677TRANSITIONS AND PROBES IN TURBULENT HELIUM
a vibration of the fiber. Here, we study the vortex sheddin
to estimate where it will occur and the effect it is likely to
have.

The frequencies of vortex shedding can be estimated a

f v5St
U0

d
, ~14!

where St is the Strouhal number, which is typically 0.2@28#;
U0 is the velocity of an ambient fluid, andd is the diameter
of the obstacle. We focus upon the shedding from the prob
which has a diameterd;7 mm.

FIG. 7. The various probe Reynolds numbers Rew we achieve in
the experiment for the two cells. Black points refer to the small ce
open circles to the large one. The scatter is partly due to the f
that several fluctuation rates are considered in the compilation. T
line shows the critical value, Rew;40, for the onset of vortex shed-
ding.

FIG. 6. Ratio ofce,ISR and ce,VSR vs Rel . Each point is the
average of three experiments performed at the same Rel , in the
same cell, with the same probe. Notice that the two measureme
agree within experimental error. Earlier measurements published
@1# showed an apparent discrepancy betweence,ISR andce,VSRwith
the dissipative range quantity being smaller than the integral ran
one. Those measurements lead to the assumption that probe ef
degraded the data at high frequencies@27,14#. The plot here shows
the latest measurements of Tabeling and co-workers performed
smaller fluctuation rates~around 20%, to be compared to 35% fo
@1#!, and do not reveal any discrepancy betweene ISR andeVSR.
g

s

e,

Two conditions must be satisfied for the vortex shedd
to be important. First it must be present. Vortex shedd
appears when the probe Reynolds number is above;40
@28#. In Fig. 7 we plot the probe Reynolds number Rew as a
function of Rel . The horizontal dashed line corresponds
the known@28# onset value 40. Its crossing with the expe
mental data gives a reading of transitional value in Rel ,
which is between 600 and 800 for small cell, and 600–11
for large cell. These ranges are close to the observed tra
tion in flatness. Next, the shedding frequency must be in
observable range of frequency. With the typical valu
U0;1 m/s in Eq.~14!, we estimate the vortex shedding fre
quency to be about 15 kHz, which is in the observable ra
of frequency. A typical spectrum is shown in Fig. 8.

Does vortex shedding have an important effect upon
flatness? Since the flatness is measured as a scale o
order of typically 5h, we expect the vortex shedding to b
gin to affect the flatness when the vortex shedding freque
@Eq. ~14!# is comparable with the Kolmogorov frequenc
@Eq. 4!#. Under Taylor’s hypothesis, this is equivalent
comparing the shedding wavelengthesl v and the Kolmog-
orov lengthh. The shedding wavelength is defined by

l v5
U0

2p f v
;1.2d ~15!

and thus essentially equals the probe sized. In Fig. 9 we plot

FIG. 8. The spectra for Rel51626. The arrows mark the pos
tions of the estimated Kolmogorov wave number, and the one of
vortex shedding.

l,
ct
he

FIG. 9. The probe sized, measured in multiples ofh, as a
function of Rel . The symbols are as in the preceding figure.
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the probe sized ~in multiples ofh) as a function of Rel .
Once again, we find that the line 1.2d crosses the data aroun
the same range of transitional value in Rel as seen in the
flatness. Thus the vortex shedding shows promise of expl
ing the position of the transition.

Next we want to know how the vortex shedding affec
the measurements of the flatness. Let us decompose th
locity signalU(t) as

U~ t !5V~ t !1A sin~vvt !, ~16!

whereV(t) denotes the velocity in the absence of shedd
and the other term might reflect, for example, a shaking
the probe with angular frequencyvv . We know that the
intrinsic signalV(t) gives a very large flatness, of order 1
On the other hand, a sinusoidal signal, like the term inA,
will give a much smaller flatness. Thus we should expect t
such an additional term would tend to reduce the flatness
seen in the experiments. A careful calculation bears out
point @29#.

However, Figs. 7 and 9 show some puzzling featur
Note the probe Reynolds number is defined as in Eq.~6!. For
a fixed geometry we expect Rel to be a fixed constant time
Re1/2. Thus all the black dots~corresponding to the sma
cell! in Fig. 8 should fall on one straight line with slop
1/2 and all the white dots should fall on another, lower by
amount corresponding to the log of the ratio of the cell siz
log103. So why do the large cell data fall onto two line
Figures 1 and 7 collect data measured in two distinct ce
one is 3 cm in radius, and the other one is 10 cm in rad
They cover four series of experiments performed over a y
there is no simple relation between Rel and Re, because, fo
the same cell size, we may have substantially different in
gral scales due to the fact that the rims do not have the s
size from one series to the other. Moreover, we have wor
with different velocity fluctuation rates. All this explain
why, for a given cell size, we do not have a simple relat
between Rel and Re. However, if we fit the means of the tw
lines we get a reasonable value of the separation betwee
curves. This separation realizes our theoretical expecta
that the two intersection points should have Rel values
which differ by a factor of the square root of the size ratio
roughly 1.7.

On the other hand, according to Fig. 1 there is no obvi
difference in the transition point between the larger cell a
the smaller. This lack of difference would be expected if t
transition were an intrinsic effect; it is not expected if
results from the probe size via having Rew with a constant
value at the transition. Thus, Fig. 8 seems to explain
position of the transition as a probe effect, but cannot sat
us on the question of the size dependence. We do note
the uncertainties in the measurements are large, thus a
sible size dependence may be overlooked.

Now we return to the question on the size of the pro
relative toh. The shedding wavelength@Eq. ~15!# is inde-
pendent of the Reynolds number. On the other hand,
maximum dissipative frequency gives a scale 10h which de-
creases with Reynolds number as Re23/4. If 10h becomes
comparable or smaller thand, the measurements of the di
sipative quantities, such as the length measurements
cussed in Sec. IV, will be influenced by the finite probe si
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Figure 9 shows that, in fact, the probe size is considera
smaller than 10h. Consequently, the vortex shedding m
give such high frequencies that it is unlikely to affect t
measured length while it may affect the flatness.~The reader
will recognize that we are getting onto dangerous grou
since we are trying to distinguish betweenh and 10h in an
order of magnitude argument.!

What does one expect to see in the length measurem
if the probe effect is relevant? As we have already seen,
vortex sheddings introduce to the system an external len
scale which is independent of the Reynolds number. T
length scale becomes observable if the measurements o
terest are on the order of the probe size. This sugges
saturation of the VSR-ISR crossover scalel in f above the
transition, which is consistent with Fig. 5 in Ref.@1#. Simi-
larly, it predicts that the length scales divided by the Ko
mogorov scale increase with Reynolds number as Rel

3/2. The
comparisons will be done in Sec. IV.

Finally we might remark that the whole problem of th
paper is in distinguishing intrinsic effects from probe effec
We tried to do this by separating the effects of Rel from that
of the probe Reynolds number. We did not entirely succe
In a future experiment, one might want to hold Rel fixed at
a few values near the transition while varying the probe R
nolds number. It might just be possible to do this since
average velocity and the root mean square fluctuations
velocity can be varied in a somewhat independent fash
This technique might serve to distinguish probe effects fr
intrinsic effects. Until we can make this distinction in
sharper fashion, we shall remain somewhat dissatisfied.
now, we see an interesting and plausible transition wh
existence has been suggested but not definitely proven.

IV. CHARACTERISTIC LENGTHS:
MEASUREMENTS VS PREDICTIONS

In this section, we discuss the characteristic lengths
played by the turbulence data. Below the transition, we
pect that the Kolmogorov dissipation length provide t
characteristic scale for all short-distance phenomena. Bey
the transition, we expect that another length might enter
problem. In both the vortex shedding approach and the th
mal boundary layer approach, this other length turns ou
be of the order of the size of the probe. This result is o
tained for the thermal boundary layer by substituting Eq.~7!
into Eq. ~5! and multiplying by the integral scale velocity
The result is a length which is essentially the probe size
this section, we measure all lengths in units of the dissipa
length. Therefore, we expect to see a constant value for
ratio below the transition. If the probe dominates the beh
ior by either of the mechanisms discussed here, we ex
the ratio of characteristic length to dissipation length to
crease as Rel

3/2.
Our first method defines the dissipation lengths by ide

fying the maximum energy dissipation scalekp as we did to
collapse the dissipation spectra. Figure 10 showskp normal-
ized by kh as a function of Reynolds number. The over
behavior can be fitted by a constant as shown by the h
zontal line. If the probe affects the scales when Rel.700 we
might expect the ratio to slope upward as shown. Eithe
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constant or an upward slope is equally well supported
these data.

Similarly, we can analyze the Rel dependences of th
lengths scales obtained by identifying the relative shifts u
to collapseD2(r ), D4(r ), andD6(r ) as discussed in Sec. I
These lengthes normalized byh vs Rel are shown in Fig. 11.
Again, a horizontal line is draw across them, and compa
with the prediction of the two probe scenarios. These data
not support the notion of an upward slope. Hence, they s
gest that the scales of order 30h are not affected by probe
unlike the flatness measurements, which correspond to sc
of 5h.

Next, we define the crossover length to be the len
rmin corresponding to the minima of the second log-log d
rivative ofD2. Here,rmin should capture the crossover fro
a r 2 scaling behavior at smallr to ar 0.7 scaling in the inertial
range. The Reynolds number dependence ofrmin is shown in
Fig. 12 in comparison with the probe prediction. No e
dence for a probe effect is seen. This is not too surpris
because here we are dealing with lengths of the orde
20h, whereas in flatness measurements are done in m
smaller length scales. The Reynolds number dependenc
all these length ratios seems to be consistent with bot
constant and the probe predictions within the scatter of d

In contrast, the related VSR-ISR crossover length sc
l in f calculated in Ref.@1# did show a saturation beyond th

FIG. 10. The positionkp of the maximum of the dissipation
spectrumI (k) defined in Eq.~1! as a function of Rel .

FIG. 11. The positionsrmax
(2) , rmax

(4) , andrmax
(6) of the maxima of

D2(r )/r
1.5, D4(r )/r

1.5, andD6(r )/r
2.5, respectively. These length

are the relative shifts used to collapseD2(r ), D4(r ), andD6(r ) for
the various Rel . They are measured in multiples ofh.
y
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transitional Reynolds number. This is suggestive of the
istence of an external scale in the system. The plot ofl in f is
Fig. 5 in Ref.@1#.

V. CAN THE TRANSITION BE SEEN IN THE ISR?

The transition in the flatness of]1u1 at Relc;700 is
rather pronounced, as seen from Fig. 1. How does this t
sition towards K41 turbulence in a VSR quantity reflect
pure ISR quantities? In this section we will see that for e
perimentally reachable Reynolds numbers the transition
hardly be expected to be visible in ISR quantities as veloc
structure function exponents and PDFs of ISR quantit
This finding is in agreement with the measurements
Tabelinget al. @1,2,4#. Thus the ISR results of the STH ex
periments do not contradict the existence of the transit
towards K41 turbulence.

For our estimate here it is sufficient to sketch the flatn
F(r )5^v r

4&/^v r
2&2 as follows@30#:

F~r !H 5Fsat510; r<10h

;r z422z2; 10h,r,L

5F`53; r>L,

~17!

L is the integral length scale. From@1# we haveL54 cm
50.4R for the large cell, independent of Rel . From the
sketch~17! we immediately obtain the Rel dependence of
the scaling corrections to K41 turbulence,

d~Rel!5uz4~Rel!22z2~Rel!u5
ln~Fsat /F`!

ln@L/10h~Rel!#
.

~18!

The ratioL/10h scales like

L

10h
5c Rel

3/2. ~19!

Rather than takingc from Eqs. ~1! and ~2! of Sec. II we
adopt it to the experimental value ofd for the Reynolds
number Rel5650 of the transition. From@4# we have
z451.25 andz250.70. Thusd50.15 andc50.185. The
Rel dependence of the scaling correctiond(Rel) is very
weak and approaches its K41 value only logarithmica
d(Rel)}1/lnRel , suggesting that 1/lnRel rather than

FIG. 12. Positionrmin ~in multiples ofh) of the mimimum of
d2lnD2(r)/d(lnr)

2 vs Rel .
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1/Rel is the small parameter in turbulence. Some numb
for still experimentally reachable Reynolds numbers
given in Table I. This weak decrease is in agreement with
slight experimental decrease of the scaling correctiondzn as
shown in Fig. 8 of@4#.

Now we focus on the PDF ofv r . In Fig. 2 of Ref.@2# no
detectable dependence of the PDF forv r for fixed scale
r5490mm on the Reynolds number was noticed. With o
above sketch~17! of F(r ) we readily calculate

FS rL ,RelD53S rL D 2d~Rel!

. ~20!

The Reynolds number dependence ofF(r /L,Rel) for fixed
r /L5490mm/4 cm50.012 again is very weak, Table I.

Finally, we give as a characteristic of the PDFF also the
stretching exponentb in a parametrization

F~v r !}expS 2U v rv r0 UbD ~21!

which is well known to fit the tails of experimental PDF
b52 means Gaussian PDF. The flatness and the stretc
exponents are connected by@30#

F5
G~1/b!G~5/b!

@G~3/b!#2
. ~22!

The stretching exponentb again only very weakly depend
on the Reynolds number, Table I. They must be direc
compared with Fig. 2 of Ref.@2# where also hardly any de
pendence is seen.

To summarize this section: The transition towards K
turbulence, seen in the STH experiments, cannot be expe
to be pronouncedly seen in pure ISR quantities as PDFs
fixed r or scaling exponentszn . To look for a similar tran-
sition in other geometries one should thus focus on V
quantities as, e.g., the~hyper!flatnesses.

VI. CONCLUSIONS

The STH experiments show a transition in behavior
Rel'700. This transition can be seen in the flatness
indeed in measurements of individual moments like
power spectrum and low order velocity moments. Howev
one might worry that the apparent transition was caused
the finite size or finite frequency resolution of the probe. W
have analyzed herein two effects which may affect the m
surement performed in the STH experiments:~a! the thermal

TABLE I. Reynolds number dependence of ISR characteris
for various Reynolds numbers beyond the transition. Only w
dependence is detected.

Rel d(Rel) F(490mm, Rel) b(Rel)

650 0.150 5.82 1.02
1000 0.139 5.54 1.06
1500 0.130 5.32 1.09
3000 0.117 5.03 1.14
5000 0.109 4.85 1.18
rs
e
e
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ing
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ted
or
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response of the probe, which imposes a limitation on
temporal resolution and~b! the vortex shedding behind th
probe, which distorts the spatial resolution of the pro
What should we conclude?

The two probe scenarios discussed in this paper b
sound plausible. We cannot prove that they are the di
cause of the transition, and in fact, we find partial eviden
against each. In the end, we conclude that the measurem
up to Rel;1300 are probably not perturbed by the two e
fects which are discussed in the present paper.

We suspect the thermal boundary layer effect to be
evant at higher Reynolds number;2000, but not in the re-
gion where the transitional behavior is observed. The k
point here is the presence of a boundary layer which
hances the thermal exchanges between the fiber and the
rounding fluid. This is confirmed by numerical analysis@24#,
which showed that the thermal frequency response is out
the turbulent spectrum in a comfortable range of Reyno
number around the transition. This is further checked by
observation that the dissipation rate seems to be corre
measured in the same range of Reynolds number; there
the thermal response of the probe seems to be satisfactor
the measurement of dissipative quantities.

Although the vortex shedding scenario gives the rig
transition value in Rel and produces the observed decrea
of flatness with Rel , it also predicts a size dependence of t
transitional Reynolds number. However, the latter does
appear to be supported by the experiment. We also rem
that a set of improved experiments show less of the ano
lous peaks in the spectra, and yet the transition persists.

Perhaps neither the vortex shedding nor the thermal la
is in itself the right explanation. However, the transition do
occur when the probe Reynolds number is high~of order 40!
and when the dissipation length is of the same order of m
nitude as the probe size. There are likely to be many ot
possible effects, not explored here, which only depend
two essential ingredients:~1! the finite size of the probe an
~2! the injection of energy in the small scale comparable
the size of the probe. Thus another effect of finite probe s
or response might intervene and produce a false signal
transition. On the other hand, it is entirely possible that
transition observed is real and has nothing to do with pro
effects.

To fully understand the nature of the transition, we w
require further experiments with closed flows. They a
likely to involve helium and probes similar to those em
ployed here. Clearly, it would be very desirable if a ma
piece of the next experiment were devoted to understand
further the behavior of the probes, and of the flow in th
neighborhood, and how this flow evolved with the Reyno
number. To fully realize the potential of the experimen
method, we need further development of the technique
using probes like these. Perhaps one can probe the velo
and temperature field around large probes with tiny ones
further understand the probe effects.
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