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Previous analysis of a helium turbulence experiment by Zoethi. and Tabelinget al. [Phys. Rev. B0,
3693(1994); 53, 1613(1996] shows a transition at the Taylor Reynolds numbegsR@00. Here correlation
function data are analyzed which gives further evidence for this transition. It is seen in both the power
spectrum and in structure function measurements. Two possible explanations may be offered for this observed
transition: that it is intrinsic to the turbulence flow in this closed box experiment or that it is an effect of a
change in the flow around the anemometer. We particularly examine a pair of “probe effects.” The first is a
thermal boundary layer which does exist about the probe and does limit the probe response, particularly at high
frequencies. Arguments based on simulations of the response and upon observations of dissipation suggest that
this effect is only crucial beyond Re-2000. The second effect is produced by vortex shedding behind the
probe. This has been seen to produce a large modification in some of the power spectra for,laigeniRyht
also complicate the interpretation of the experimental results for higher values of the Reynolds number.
However, there seems to be a remaining range of data foprxR800 uncomplicated by these effects, and
which are thus suggestive of an intrinsic transitifB1063-651X%97)04602-3

PACS numbe): 47.27—i, 47.80+v

I. INTRODUCTION perpositions show that there adéferentforms of the curves
above and below the transition, but within each group the
Recent velocity measurements in highly turbulent heliumforms of the curves are roughly the same. The shifts neces-
gas flow by Tabelinget al. [1-6] reveal a transition in the sary to superpose such curves give a measurement of char-
turbulent behavior. The results of Ref&—5] show that be-  acteristic length or frequency scales in each measurement.
yond some crossover Taylor Reynolds numbey-Re00 the  These scales and their dependence upon the Reynolds num-
flatness of the velocity derivatives ceases to increase. Suchlr will be analyzed in this paper because they are important
transitional behavior has never been reported in open flows give insight into the physical origin of the transition.
[7,8], while earlier results on closed flows, also in helium  The central point of this paper is to examine the possibil-
[9-11], have also revealed the existence of a transition aity that the apparent transition might be a reflection of probe
large Reynolds numbers. In our discussions we would distindefects. We study two different specific probe effects in
guish between two classes of experimeriiy: A group of  some detail.
experiments on thermally driven turbulence in helium, con- There are two likely sources of difficulties in the measure-
ducted by Libchaber and co-workeisee Refs[9-11]). We  ment, one being that the probe might have insufficient time
shall collectively describe these experiments as TTH,(@hd resolution, the other being that it might be too large. To
the other group of experiments include studies of shearstudy the first possibility, we follow the analysis of Gross-
driven turbulence in heliuniSTH). This set includes Refs. mann and Lohsgl4], who showed the possibility of the loss
[1-6] which have been done by Tabeling and co-workersof probe sensitivity in temperature measurements for
For the STH experiments, it has been argued that the crosRayleigh-Baard flow[15,9]. This probe effect occurs as a
over signals the instability of vortex tubésorms [5]; one  result of delays and averaging related to thermal diffusion
may speculate also whether it signals the onset of Kolmogthrough the partially stagnant gas about the probe. In the
orov 1941(K41) turbulence13]. STH experiments considered in the present paper, the probe
This paper is devoted to a further analysis of this crossis a hot wire anemometer, which works by heating the gas
over, including two main questionél) Can the transition be around it. Once again, the probe measures temperature
seen in the further analysis of correlation functio@?Can  changes and can possibly have poor temporal response. This
it possibly be understood as some kind of probe effect? s the first probe effect we analyze in this paper. The second
To discuss the former issue we analyze structure functionkind of effect we consider involves what happens when the
D,(r)=([u(x+r)—u(x)]"y of order n=2,4,6 and the en- probe size and the dissipative scale becomes comparable.
ergy spectrum. We try to superpose structure functions an@®ne effect which can arise is vortex shedding behind the
spectra for different Reynolds numbers Re. Indeed, the sysrobe. In “ordinary” hot wire anemometr{i.e., cylindrical
probes working in aj; the operating conditions are such that
even at largdoveral) Reynolds numbers, there is no vortex

*Electronic address: leo@control.uchicago.edu shedding behind the sensdi)]. In the STH experiments,
"Electronic address: lohse@cs.uchicago.edu the Reynolds number based upon probe size is large enough
*Electronic address: jw@control.uchicago.edu so that it is reasonable to ask about vortex shedding. This
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issue has been partially addressed in the [@a4t; the gen- 20 . —————y
eral conclusion is that if the vortex shedding frequency is I
outside the turbulent spectrum, no big perturbation is ex- i
pected. In the opposite case, the vortex shedding mode may 15 - ,; . 7
couple with the turbulent fluctuations, and perturb the mea- - o%ee
surement. Our analysis compares these scales and discusses I 3 8%"'@ 28 ]
the implication of the results. = 10r o8 ERe @ ]
The paper is organized in the following way. In Sec. Il, i o .}o-ocg © : ]
we show evidence for a change in behavior at high Reynolds 5L b
numbers. Section Il is devoted to looking at probe effects .
which might partially explain the observed change in behav-
ior. In Sec. IV, additional evidence is drawn from the mea- 0 ‘ R S
sured Reynolds number dependence of characteristic scales. 100 1000
In Sec. V we demonstrate by a simple estimate that inertial R,
subrange(ISR) quantities, such as scaling corrections or
probability distribution functiongPDF9 of velocity differ- FIG. 1. The flatness of the velocity derivatives is plotted against
ences in that range, are hardly effected by the transitionre . Results for the small cell are given as the black points and for
Section VI is devoted to conclusions. the large one as the empty circles. This same convention is used in
the later figures. Each point shown here is the average of three
II. EVIDENCE FOR TRANSITION experiments performed at the sameg, R& the same cell, with the
same probe.

A. The flatness

The velocity measurements of the STH experiments arinctionDs(r). In Ref.[1] the length scalé;,; was defined
done in low temperature helium gas, following the idea ofaS the value for which the ratie D5(r)/r is equal to 70% of
the TTH experiment$17,15,9 which were built upon the itS maximum value and we will adopt this definition here.
experiments of Threifal[18]. The flow is driven by two The cIaSS|caI/expectat|on_|s that a length like this will de-
counterrotating disks of radiuR. Two different cells are crease as R€'™. The experimental result shows the expected

used: Cell 1 withR=3.2 cm[3,1,2 and cell 2 withR=10 behavior below.a transitional Reynolds numper bl_Jt appears
cm [1,2]. The velocity anemometefprobe”) of sized=7 to saturate at higher Reynolds numbéd&ee F!g. 5 in Ref.
um is placed far enough from the boundary layers. The Reyl1]) It was also found(see[1]) that the scaling range of
nolds number is defined as R€R?/v. The angular veloc- apparent ISR behaV|or' seems to saturate and may even
ity Q0 of the disks, which is about 1-10 Hz, remains aboutS"ink beyond the transition Reynolds number.
the same for all measurements, whereas Re is varied by S )
changing the helium pressure and thus the viscasity B. Dissipation spectra and structure functions

The transition was first observga] in the properties of The previous work mostly focused on the scalings of the
the flatnes$= and the skewness of the velocity derivative. Inviscous dissipation. Here we seek further evidence of the

this paper, we focus upon the flatness since the transitionalansition and its nature. We first analyze the energy dissipa-
phenomenon was less visible in the skewness. The flatnesstigsn spectral (k)=k?E(k) as a function of the Reynolds

defined to be number.[Here, E(k) is the usual power spectrum, obtained
as a function of frequency and then translated into a depen-
E=lim Da(r) dence upon wave vectors through its mean velocity follow-
ol Da(r)]* ing the Taylor hypothesisWe find that the curves for the

dissipation spectra fall into two groups: There is one shape

Figure 1 shows a series of flatness measurements for thehich holds for all curves below the transition and another
small and large cells, plotted as a function of,ReéThis  shape which governs the curves above the transition.
Reynolds number is experimentally defined in terms of the The spectra are calculated over 16 million points, corre-
rms fluctuations in the velocityl]. Figure 1 incorporates sponding to 100—1000 large eddy turnover times for each
unpublished data recently obtained with the smaller cell. Agraph. The data is then divided into abodt €quencies of
rough estimate for the experimental uncertainty in the flat2'® points. The power spectra are computed for each se-
ness is+15%. At a lower Reynolds number, the flatn€ss quence and averaged over different segments. A Hanning
increases with increasing ReThen, at a transition value of window is used in computing the specfit9]. To collapse
the Reynolds number, it seems to reach a peak and then lewle spectra, we determine the peak of the dissipdtioand
off at a higher Rg. The peak flatness is located at\Re its corresponding frequencl, following the approach of
comprised between 550 and 750 for the small and large cellRef.[20]. We then rescale the wave number and the dissipa-
(see Fig. 1 and also Fig. 5 ¢2]). These peak values are tion spectrum byk,, and |, respectively. The rescaled
identified as the Renumber for some kind of crossover or spectra are then plotted in Fig. 2. Figur@2shows the col-
transition. lapse for different Reynolds numbers below the transition,

The nature of the transition reflects itself in the,REe-  whereas Fig. @) for those above the transition. Figuré&cp
pendence of characteristic length scales. A possible choice ghows a comparison of the shapes for the two scaling curves.
the length scale of the transition from the viscous subrang&he solid line corresponds to a general fitting form taken
(VSR ) to the inertial subrang@SR) in the velocity structure  from [20,21]
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the same spirit. First we look &,. SinceD, and the power
spectra contain the same information, the resultsDon
should provide us a double check on the previous finding. To
collapse the different curves &f, versusr, we use the same
method as applied to the dissipation spectra. We find a char-
Ll acteristic length for each plot by finding the point of the
—300 il log-log plot at which the slope has a predetermined constant
— ~-600 ‘ value. To probe the VSR-ISR transition range, we choose the
""" constant slope to be 1.5, i.e., a value in between the VSR
slope 2 and the ISR slope of approximately 2/3. The method
0.1 1 corresponds to finding the maximum B&(r)/r*5 We call

b this scaler(Z), and defineD, p.,=D[r%]. In Fig. 3 we

plot D,(r)/r°vsr for various Rg, normalized so that the
maximum always is afl1,1). Once again, we find the data
separate into two groups: one for,Re800, and another for
Re >1500. The relative shifts in horizontal and vertical di-
rections define the scale in length and velocity. We return to
the length scale in Sec. IV.

We apply the same method to stu@y(r) and Dg(r).

We again collapse them by finding specific values of the
slope in the log-log plot. In these cases, the chosen slopes
are, respectively, 1.5 and 2.5. For the fourth order structure
function (Fig. 4), we see clear separation of two groups.
Again, the separation occurs between ,R800 and

Re =1500. However, Fig. 5 for the sixth order structure
functions does not show such separations. The failure of see-
ing two groups inDg somewhat weakens the argument for a
simple transition.

Thus we have shown some additional evidence for the
existence of a transition in the STH experiment. The struc-
ture functionsD,(r), Dy4(r), and the spectrum indicate a
simple transition whereas higher order structure functions
suggest a broadened transition.

It is clear that there is some kind of change or transition
13 : centered at Reof about 700. How does one explain the
' k/k ) observed transition? Can it possibly be a probe effect? We
turn to those issues in Sec. Ill.

(a)

Below Transition:
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eq. (1) in the text

FIG. 2. Collapse of dissipation spectra. Pdasand(b), respec-

tively, show overlays of different dissipation spectra for, Relow lIl. PROBE EFFECTS
and above the transitional value. P&t shows the comparison of
two spectra, one from above and one from below. In this section, we shall obtain a variety of order of mag-

nitude estimates. To make these estimates, we will have to
K\ =B/ k2 compare a characteristic dissipative frequency in the system
—I—a(—) }(—) e #K (1)  to the characteristic inverse times produced by the probe it-
Kp Kp self. We estimate the dissipative frequency as
wg=U/(107) in agreement with the spectral measurements
where the fitting parameters ate=0.7, B=—1, andu is  of Zocchiet al.[1]. This frequency is then the inverse of the
determined to make the peak occukét,=1. In this fit, the  time it takes for a disturbance of size 2@ move past the
second summand reflects the bottleneck energy pileup at throbe. Here, we use the classically expedi2d] relation
borderline between inertial subrange and viscous subrangsetween the Kolmogorov length and the dissipation rate
[22]. Note the good agreement between the fitting formulae. The definition of the length isy= % €4, with » having
and the data holds above the transition, but not below. Figurghe approximate value
2 then shows a situation in which the dissipation spectra
changes at the transitional Reynolds number. 7
The relative shifts in the logarithmic scales define unam- — =30 Re ¥4 2)
biguously the relative length and energy scale in the system. R
In Sec. IV, we shall study the Reynolds number dependence
of the length scales in comparison with different theories ofin our last steps of analysis we shall express our results in
what might cause the apparent transition. terms of the Taylor-Reynolds number which according to the
To further test the existence of two groups of scalingmeasurements of Rdfl] is connected to the Reynolds num-
functions, we examine different structure functidhg(r) in ber by

—5/3

|(k)=|(kp)[(k—
p
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FIG. 3. The curve®,(r)/r5vsr group into two groups, one FIG. 5. Dg(r)/r“>vsr, normalized as in the two previous fig-

for Reynolds numbers below the transition, one for Reynolds numUres. In contrast to Figs. 3 and 4, a separation of the curves into two
bers above the transition. We have shifted the curves so that tH@fOUPS is not obvious.

maximum is at(1,1). As in Fig. 2, this figure also contrasts the 01 shectrum becomes smaller for increasing Ra and the

relatively unvarying behavior above and below the transition with easured dissipative power shows a weaker Ra increase as

the somewhat larger change which occurs across the transition. elow the transition. Grossmann and Lolidd] suggested

this and in the next two figures, we use open symbols to indicate thfenat this apparent transition might really be an effect caused

flows below transition, and solids above the transition. by the probe used to measure temperatures. The thickness
6 of the boundary layer around the probe sets a diffusive

Re,=1.57 Ré”. (3)  time scale
From Eq.(2) we obtain wyt= 6%k, (5)
U v 1 where  is the heat diffusivity. Beyondv s, the measured

e’ (4) spectral strength will be reduced. df; is smaller than the
UV spectral cutoffwy, this will affect the UV side of the

ggxertial range betweew s and wy. This explanation of the

=10, ~ R 30¢

Here and below, we do our estimates by setting the Pran

b d high Rayleigh ber dat be effect is still
number, defined as the ratio of viscosity and the therm servec hign Hay'eign nUmDer daa as a prooe efect 1S St

nproven, but it has certainly never been ruled out.

diffusivity, equal to unity. One might wonder whether a similar effect would affect
the results of the STH experiments. Note that the simplest
A. The thermal boundary layer estimate for the value of Reat the transition of the TTH

The experimental resulfd] on the crossover length scale experiment is (18))™~700. By some accider(®) this is
L i th pth' 4 ord Truct funct bl gth d the same number as that observed in the STH experiments.
inf 1N the third order structure function resemble tosSe de-—yy ig heat diffusion relevant for the velocity measure-

duced from the temperature measurements in the highly tufs, 6<% The anemometer is heated by an electrical current.

bulent Rayleigh-Beard flow[9]: Beyond a critical Rayleigh  The faster the fluid is passing by the probe, the more power
number Re=10", the scaling range of the temperature s needed to keep the probe at some constant temperature,
which is larger than the temperature of the surroundings. The
1.2 , ' ' ' probe gauge curve power vs velocity is given by King’s law
+o1sEe and is experimentally knowfs].
e 180z L What velocities does the probe measurealinotbe the
= 2394 ] velocity directly at the probe, as there will be a viscous
* 3439 ] boundary layer of thicknes$ around it in which the velocity
is very small. The heat generated in the probe has to diffu-
sively penetrate this layer. Thus the probe measures the ve-
locity of the helium which is a distancé away from the
probe. The length scalé again sets the diffusive time scale
T described by Eq(5).
Our problem is to now estimate the important véafief
+ 6 and then to see whether thg; thereby generated provides
Q\t\w an important cutoff on the responsiveness of the probe.
1 ] This has been carried out in two different ways. One of us
0.01 0.1 1 10 100 1000 (V.E.) has done numerical simulations of the flow past the
r probe, assuming a laminar time-independent fl[@d]. The
calculation must be done numerically since the Reynolds
FIG. 4. D4(r)/rSvsr; again, both axes are normalized so that numbers of the probe
the maximum is at(1,1). As in Fig. 3 this figure contrasts the
behavior within the region above and below the transition with the
change which occurs across the transition.

0.8 +

0.6 +

D(r)/f

0.4 —

0.2 +

ud d
ReprobeZTZ Reﬁ (6)
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is of the order of 40 at the observed transition point. Herethick boundary layer are as important as thin ones. There-
d=7 um is the size of the probe. A steady state is reached ifiore, relatively sluggish regions can effect the outcome. In
which the flow is constant and in which there is a constantontrast, in the STH experiments, only the most responsive
flow of heat away from the probe. The calculated flow isregions matter.

then perturbed with a sudden upstream rise in temperature.

The probe responds and the important result is that the probe B. The dissipation rate test

response time is shorter than any time resolved in the experi-

ment. The conclusion is that one can assume that the thermal OneTEan construg.t a. d'fCt te?t ofdthe frgbe respt;)nswe-
response of the probe is perfect. ness. e energy dissipation rate—denotedebycan be

The next question is: How large is the viscous boundar)’“easu_red In two d_lfferent ways]. One mvolve_s a measure-
layer 6? There are, in fact, two answers. If the probe Rey-me.nt in the inertial subrangg and_ dpte_rmmes a quantity
nolds number is of order 10 to 100, then there are region&’hICh we C"?IHE'SR' The other is r_:t_d|SS|pat|ve measurement
with a thin viscous boundary layer in which the flow comes@d déterminegysg Both quantities can be expressed in

. . o . 3
very close to the cylinder. According to the Blasius theorydImenSIonIess _form by writing as the _ratlo ofe o U%R
this boundary layer thickness should be whereU=QR is the large scale velocity. In this way one
finds the two different(Reynolds number dependef5])

Socd/ /—Repmbe 7) ratios

The flow behind the probe produces a much larger region of
stagnant fluid at rest, with a thickness comparable to the cell
size. Thus we have also

R R
Ce1SR™ €ISR(j3 and C.ysg= €VSRj3- (11

One can finde gk by using the fact that the third order struc-
Socd. (8)  ture functionD®)(r) obeys the Kolmogorov structure equa-
tion [23]
The frequency produced by these lengths via €. will
only matter if they are smaller than or of the order of the DO (r)=—4¢gx /5. (12
Kolmogorov cutoff of Eq.4). Since these frequencies differ
by a factor of the probe Reynolds number they are quitdéVhen Tabeling’s group carries out their ISR measurement
different. The conditions they generate are different also. Itheir results agree with the expected spatial scaling and thus
the lengthd matters, then the frequency cutoff will bother us enable them to construct |sr. In addition, the energy dis-
whenever the Reynolds number Re obeys sipation ratee is measured by a method which uses the vis-
cous subrangeeysr, namely, by determining from the
R
30({ d

spectrumiE(k) as
Conversely if the size of the Blasius boundary layer matters,
we will get the less stringent condition

21417

Re> 9

€ysr= 15vfomdk ICE(K). (13

3 Here, full isotropization has been assumed. Strictly speaking,
Re>(300R/d) (10 eysris only based or(d,u;)?) which is (via Taylor's hy-
othesis[26]) the only experimentally accessible contribu-
on to the strain tensof;u;. This determination ok then
gives the other dimensionless constantysg. In Fig. 6 we
'show the ratioc, |sr/C.ysr. If the probe response was cut
off at high frequencies, one would expext, srto be sub-

for the Reynolds number at which the thermal boundar)g
layer of the probe becomes important.

These answers are quite different. If the important dis
tance isd, we get from Eq.(9) an estimate of the critical

Taylor-Reynolds number, Re as~1000 for the small cell stantially smaller thawr, sg, i.., the ratio to be larger than

and ~2000Rfor ]:[he (Ijargemcoell._r'rl]'he exper:ment mea:_;luresl 4 The data shows no support for that hypothesis. So we must
crossover Re ot order 700. These results are perilously ¢,nq)yde that, within experimental errvhich is rather sub-

close. . . , .
. . . stantia), the high frequency response of the probe is satis-
On the other hand, if it is appropriate to use the Blas'usfactory). g 9 y resp P

length then Eq(10) gives a much larger critical Reynolds
number, in fact, a critical value of Revhich is greater than
10* and which cannot be realized in the experiment.

So which length should we use? To see the answer notice In this section, we discuss the effect of finite probe size on
that the experiment measures the heat flow out of the probepatial resolution. We focus particularly upon the effects of
This heat flow is much larger in regions in which the bound-vortex shedding from the probe.
ary layer is thinner. Thus, for larger Ry the important Zocchi et al. [1] have observed a series of peaks at the
regions are the ones which have the Blasius effect and afgigh end of the power spectra. The exact origin of these
thinned by a factor of (Rﬁobgfl’? The simulation[24]  peaks is unknown. Possible sources are vortex shedding, vi-
fully supports this point of view. Note also that this line of brations of the probe and its support. In more recent experi-
argument does not apply to the TTH experimgl#,9) and  ments, the fiber has been strained at a tensile strength ten
its analysid14]. In the TTH experiment, the probe measurestimes larger than before and the peaks have mostly disap-
the average temperature in its environment. Regions of thpeared. This indicates that some of the observed peaks were

C. Vortex shedding behind the probe
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FIG. 6. Ratio ofc,,sg andc, ysg vs Rg . Each point is the VOrtex shedding.

average of three experiments performed at the same Rethe . s .
same cell, with the same probe. Notice that the two measurements Two conditions must be satisfied for the vortex shedding

agree within experimental error. Earlier measurements published iFP be important. First it must be present. Vo'ftex shedding
[1] showed an apparent discrepancy betwegrg andc, ysgWwith appears _vvhen the probe Reynolds number is abevié
the dissipative range quantity being smaller than the integral rangt28]- In Fig. 7 we plot the probe Reynolds number,Res a
one. Those measurements lead to the assumption that probe effefgiction of Rg . The horizontal dashed line corresponds to
degraded the data at high frequendi2g,14. The plot here shows the known[28] onset value 40. Its crossing with the experi-
the latest measurements of Tabeling and co-workers performed &fental data gives a reading of transitional value in, Re
smaller fluctuation rateground 20%, to be compared to 35% for which is between 600 and 800 for small cell, and 600—-1100
[1]), and do not reveal any discrepancy betwegyk and eysg for large cell. These ranges are close to the observed transi-
tion in flatness. Next, the shedding frequency must be in an
a vibration of the fiber. Here, we study the vortex sheddingobservable range of frequency. With the typical values
to estimate where it will occur and the effect it is likely to Uy~1 m/s in Eq.(14), we estimate the vortex shedding fre-
have. guency to be about 15 kHz, which is in the observable range
The frequencies of vortex shedding can be estimated asof frequency. A typical spectrum is shown in Fig. 8.
Does vortex shedding have an important effect upon the
f :S& (14) flatness? Since the flatness is measured as a scale on the
v ? . .
d order of typically 57, we expect the vortex shedding to be-
gin to affect the flathess when the vortex shedding frequency
where St is the Strouhal number, which is typically 28],  [Eq. (14)] is comparable with the Kolmogorov frequency
Uy is the velocity of an ambient fluid, ardiis the diameter [Eq. 4]. Under Taylor's hypothesis, this is equivalent to
of the obstacle. We focus upon the shedding from the probesomparing the shedding wavelengtHesand the Kolmog-

which has a diametet~7 pm. orov lengthz. The shedding wavelength is defined by
Uog
1000 S —_— =54 ~1 (15
E : ] v
i o o O and thus essentially equals the probe sizn Fig. 9 we plot
100 | oY o 9
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FIG. 7. The various probe Reynolds numberg, Re achieve in 0.01100 : PSS i, 1-0100
the experiment for the two cells. Black points refer to the small cell,
open circles to the large one. The scatter is partly due to the fact R,
that several fluctuation rates are considered in the compilation. The
line shows the critical value, Re- 40, for the onset of vortex shed- FIG. 9. The probe sizel, measured in multiples of;, as a

ding. function of Rg . The symbols are as in the preceding figure.
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the probe sizad (in multiples of ) as a function of Re. Figure 9 shows that, in fact, the probe size is con;iderably
Once again, we find that the line &.2rosses the data around Smaller than 1§. Consequently, the vortex shedding may
the same range of transitional value in,Res seen in the 9iVe such high frequencies that it is unlikely to affect the

flatness. Thus the vortex shedding shows promise of explaifi€asured length while it may affect the flatnéghe reader
ing the position of the transition. will recognize that we are getting onto dangerous ground,

Next we want to know how the vortex shedding affectsSince we are trying to distinguish betwegnand 107 in an
the measurements of the flatness. Let us decompose the v@der of magnitude argument.

locity signalU(t) as ~ What does one expect to see in the length measurements
if the probe effect is relevant? As we have already seen, the
U(t)=V(t)+A sin(e,t), (16)  vortex sheddings introduce to the system an external length

scale which is independent of the Reynolds number. This
whereV(t) denotes the velocity in the absence of sheddindength scale becomes observable if the measurements of in-
and the other term might reflect, for example, a shaking oferest are on the order of the probe size. This suggests a
the probe with angular frequenay,. We know that the saturation of the VSR-ISR crossover scajg above the
intrinsic signalV(t) gives a very large flatness, of order 10. transition, which is consistent with Fig. 5 in R¢f]. Simi-
On the other hand, a sinusoidal signal, like the termAjn larly, it predicts that the length scales divided by the Kol-
will give a much smaller flatness. Thus we should expect thatnogorov scale increase with Reynolds number a&’R&he
such an additional term would tend to reduce the flatness, e@@mparisons will be done in Sec. IV.
seen in the experiments. A careful calculation bears out this Finally we might remark that the whole problem of this
point [29]. paper is in distinguishing intrinsic effects from probe effects.
However, Figs. 7 and 9 show some puzzling featuresWe tried to do this by separating the effects of Rem that
Note the probe Reynolds number is defined as in(Bg.For  of the probe Reynolds number. We did not entirely succeed.
a fixed geometry we expect Réo be a fixed constant times In a future experiment, one might want to hold,Rixed at
Re'2. Thus all the black dotgcorresponding to the small a few values near the transition while varying the probe Rey-
cell) in Fig. 8 should fall on one straight line with slope nolds number. It might just be possible to do this since the
1/2 and all the white dots should fall on another, lower by amverage velocity and the root mean square fluctuations in
amount corresponding to the log of the ratio of the cell sizesyelocity can be varied in a somewhat independent fashion.
log;03. So why do the large cell data fall onto two lines? This technique might serve to distinguish probe effects from
Figures 1 and 7 collect data measured in two distinct cellstntrinsic effects. Until we can make this distinction in a
one is 3 cm in radius, and the other one is 10 cm in radiussharper fashion, we shall remain somewhat dissatisfied. For
They cover four series of experiments performed over a yeaflow, we see an interesting and plausible transition whose
there is no simple relation between,Rend Re, because, for existence has been suggested but not definitely proven.
the same cell size, we may have substantially different inte-
gral scales due to the fact that the rims do not have the same
size from one series to the other. Moreover, we have worked IV. CHARACTERISTIC LENGTHS:
with different velocity fluctuation rates. All this explains MEASUREMENTS VS PREDICTIONS
why, for a given cell size, we do not have a simple relation
between Reand Re. However, if we fit the means of the two  In this section, we discuss the characteristic lengths dis-
lines we get a reasonable value of the separation between tidayed by the turbulence data. Below the transition, we ex-
curves. This separation realizes our theoretical expectatiopect that the Kolmogorov dissipation length provide the
that the two intersection points should have,Realues characteristic scale for all short-distance phenomena. Beyond
which differ by a factor of the square root of the size ratio orthe transition, we expect that another length might enter the
roughly 1.7. problem. In both the vortex shedding approach and the ther-
On the other hand, according to Fig. 1 there is no obviougnal boundary layer approach, this other length turns out to
difference in the transition point between the larger cell ande of the order of the size of the probe. This result is ob-
the smaller. This lack of difference would be expected if thetained for the thermal boundary layer by substituting &9.
transition were an intrinsic effect; it is not expected if it into Eq. (5) and multiplying by the integral scale velocity.
results from the probe size via having JReith a constant The result is a length which is essentially the probe size. In
value at the transition. Thus, Fig. 8 seems to explain théhis section, we measure all lengths in units of the dissipation
position of the transition as a probe effect, but cannot satisfjength. Therefore, we expect to see a constant value for this
us on the question of the size dependence. We do note theatio below the transition. If the probe dominates the behav-
the uncertainties in the measurements are large, thus a pd§¥ by either of the mechanisms discussed here, we expect

sible size dependence may be overlooked. the ratio of characteristic length to dissipation length to in-
Now we return to the question on the size of the probecrease as RE.
relative to . The shedding wavelengflEq. (15)] is inde- Our first method defines the dissipation lengths by identi-

pendent of the Reynolds number. On the other hand, th&ing the maximum energy dissipation scé&lgas we did to
maximum dissipative frequency gives a scaleyihich de-  collapse the dissipation spectra. Figure 10 shkyvsormal-
creases with Reynolds number as R& If 107 becomes ized by k, as a function of Reynolds number. The overall
comparable or smaller thash the measurements of the dis- behavior can be fitted by a constant as shown by the hori-
sipative quantities, such as the length measurements digontal line. If the probe affects the scales wheRRé00 we
cussed in Sec. IV, will be influenced by the finite probe sizemight expect the ratio to slope upward as shown. Either a
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constant or an upward slope is equally well supported b){

these data.
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d?InDy(r)/d(Inr)? vs Rg, .

transitional Reynolds number. This is suggestive of the ex-
stence of an external scale in the system. The pldt,efis

Similarly, we can analyze the Relependences of the Fig. 5 in Ref.[1]
lengths scales obtained by identifying the relative shifts used
to collapseD,(r), D4(r), andDg(r) as discussed in Sec. Il
These lengthes normalized byvs Rq are shownin Fig. 11.  The transition in the flatness of,u; at Rg ~700 is
Again, a horizontal line is draw across them, and comparegather pronounced, as seen from Fig. 1. How Cdoes this tran-
with the prediction of the two probe scenarios. These data dgition towards K41’ turbulence in a VSR quantity reflect in
not support the notion of an upward slope. Hence, they su

pure ISR quantities? In this section we will see that for ex-
gest that the scales of order 8@re not affected by probes gp 9

like the flat ts. which dt IEerimentally reachable Reynolds numbers the transition can
uniike the flatness measurements, which correspond to sca ﬁrdly be expected to be visible in ISR quantities as velocity

defi h | h be the | structure function exponents and PDFs of ISR quantities.
Next, we define the crossover length to be the lengthryis finging is in agreement with the measurements of
Fmin COrTesponding to the minima of the second log-log de"l'abelinget al.[1,2,4]. Thus the ISR results of the STH ex-

rivgtive of D,. Here,r i, should capture the crossover from ariments do not contradict the existence of the transition
ar© scaling behavior at smallto ar™' scaling in the inertial  ;5\vards K41 turbulence.

range. The Reynolds number dependencegfis shownin o our estimate here it is sufficient to sketch the flatness
Fig. 12 in comparison with the probe prediction. No evi- F(r)=<04>/<v2>2 as follows[30]:
dence for a probe effect is seen. This is not too surprising reAT '

V. CAN THE TRANSITION BE SEEN IN THE ISR?

because here we are dealing with lengths of the order of =F¢,=10; r=<109

207, whereas in flatness measurements are done in much 20 {op<r<lL

smaller length scales. The Reynolds number dependence of F(r) r ’ n=r (17)
all these length ratios seems to be consistent with both a =F,=3; r=L,

constant and the probe predictions within the scatter of data. i
In contrast, the related VSR-ISR crossover length scalé is the integral length scale. Frofd] we haveL=4 cm

l,¢ calculated in Ref[1] did show a saturation beyond the =0-4R for the large cell, independent of Re From the
sketch(17) we immediately obtain the Redependence of

the scaling corrections to K41 turbulence,
10* 3 T

. @ . )
L O e @y ~ In(FeulF.)
1000 L = m 5(RQ\)_|§4(RQ\)_2€2(RQ\)| _|n[L/107](RQ\)] '
(18
100 ¢ The ratioL/107 scales like
L
10 b = /2
107 c RE, (19
1 L

Rather than taking from Egs. (1) and (2) of Sec. Il we
adopt it to the experimental value @ for the Reynolds
number Re=650 of the transition. From{4] we have
{,=1.25 and{,=0.70. Thus$§=0.15 andc=0.185. The
Re, dependence of the scaling correctiofRe) is very
weak and approaches its K41 value only logarithmically,
6(Re)x1/InRg , suggesting that 1/InRe rather than

FIG. 11. The positions 2, r®) . andr(€), of the maxima of
D,(r)/r5 D4(r)/r15 andDg(r)/r?5, respectively. These lengths
are the relative shifts used to collag3g(r), D4(r), andDg(r) for

the various Rg. They are measured in multiples gf
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TABLE I. Reynolds number dependence of ISR characteristicyesponse of the probe, which imposes a limitation on the
for various Reynolds numbers beyond the transition. Only weakemporal resolution an¢b) the vortex shedding behind the

dependence is detected. probe, which distorts the spatial resolution of the probe.
What should we conclude?

Re, 5(Re)) F(490 um, Rg) B(Re\) The two probe scenarios discussed in this paper both

650 0.150 5.82 1.02 sound plausible. We cannot prove that_ they are the_ direct

1000 0139 554 1.06 cause of the transition, and in fact, we find partial evidence

against each. In the end, we conclude that the measurements

1500 0.130 5.32 1.09

up to Rg~1300 are probably not perturbed by the two ef-
3000 0.117 °.03 1.14 fects which are discussed in the present paper
5000 0.109 4.85 1.18 P paper.

We suspect the thermal boundary layer effect to be rel-
evant at higher Reynolds numbet2000, but not in the re-

1/Rg, is the small parameter in turbulence. Some numbergion where the transitional behavior is observed. The key

for still experimentally reachable Reynolds numbers ar oint here is the presence of a boundary Iayer which en-
given in Table I. This weak decrease is in agreement with th ances the thermal exchanges between the fiber and the sur-

: . . founding fluid. This is confirmed by numerical analyidd],
slight experimental decrease of the scaling correcfignas . . .
shown in Fig. 8 off4]. which showed that the thermal frequency response is outside

. the turbulent spectrum in a comfortable range of Reynolds
Now we focus on the PDF af, . In Fig. 2 of Ref.[2] no . g
detectable dependence of the PDF fqr for fixed scale number around the transition. This is further checked by the

- . . observation that the dissipation rate seems to be correctly
r=490 um on the Reynolds num_ber was noticed. With OUl heasured in the same range of Reynolds number; therefore
above sketch{17) of F(r) we readily calculate

the thermal response of the probe seems to be satisfactory for
- 5(Re,) the measurement of dissipative quantities.

(20 Although the vortex shedding scenario gives the right
transition value in Re and produces the observed decrease
of flatness with Rg, it also predicts a size dependence of the
transitional Reynolds number. However, the latter does not
appear to be supported by the experiment. We also remark
that a set of improved experiments show less of the anoma-
lous peaks in the spectra, and yet the transition persists.

Perhaps neither the vortex shedding nor the thermal layer
(21 is in itself the right explanation. However, the transition does
occur when the probe Reynolds number is highorder 40
and when the dissipation length is of the same order of mag-
. nitude as the probe size. There are likely to be many other
I”f:)(%)ssible effects, not explored here, which only depend on
two essential ingredient$l) the finite size of the probe and

F i Re | =3 '
A I

The Reynolds number dependencergf/L,Re,) for fixed

r/L=490 um/4 cm=0.012 again is very weak, Table I.

Finally, we give as a characteristic of the P3Falso the
stretching exponenB in a parametrization

Ur

f(vr)OCEXF{ _‘ 0 k
Ur

which is well known to fit the tails of experimental PDFs.

exponents are connected [80]

T(1/8)T(5/8) (2) the injection of energy in the small scale comparable to
F= TGERT (22) the size of the probe. Thus another effect of finite probe size

or response might intervene and produce a false signal of a
transition. On the other hand, it is entirely possible that the

transition observed is real and has nothing to do with probe
Yeffects.

The stretching exponerg again only very weakly depends
on the Reynolds number, Table I. They must be directl

compared with Fig. 2 of Re{2] where also hardly any de- To fully understand the nature of the transition, we will

pendence is seen. require further experiments with closed flows. They are

To summarize this section: Th_e transition towards K41Ii ely to involve helium and probes similar to those em-
turbulence, seen in the STH experiments, cannot be expecte . : . .
oyed here. Clearly, it would be very desirable if a major

:&ebc?rp(r)?nsocl;rlli(rzlzdgx;iﬁ;:?g pu[?olilqu%e:n;t;a;"a;r I:rlgrl]:s f ;5iece of the next _experiment were devoted to under_standi.ng
sition in other geometries gﬁe should thus focus on VS urther the behavior of the probes, and of the flow in their
- eighborhood, and how this flow evolved with the Reynolds
quantities as, e.g., thiaypepflatnesses. number. To fully realize the potential of the experimental
method, we need further development of the technique for

VI. CONCLUSIONS using probes like these. Perhaps one can probe the velocity

The STH experiments show a transition in behavior forand temperature field around large probes with tiny ones to

Re,~700. This transition can be seen in the flatness andHrther understand the probe effects.

indeed in measurements of individual moments like the

power spectrum and low order velocity moments. However, ACKNOWLEDGMENTS
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