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Abstract. Molecular electronic devices are the upmost destiny of the miniaturiza-
tion trend of electronic components. Although not yet reproducible on large scale,
molecular devices are since recently subject of intense studies both experimentally
and theoretically, which agree in pointing out the extreme sensitivity of such de-
vices on the nature and quality of the contacts. This chapter intends to provide a
general theoretical framework for modelling electronic transport at the molecular
scale by describing the implementation of a hybrid method based on Green func-
tion theory and density functional algorithms. In order to show the presence of
contact-dependent features in the molecular conductance, we discuss three archety-
pal molecular devices, which are intended to focus on the importance of the different
sub-parts of a molecular two-terminal setup.

1 Introduction

The incessant development of single molecule techniques is forcing a paradigm
shift in the many neighboring branches of nano-sciences. This process does
not exclude the modelling and design of electronic devices. Novel fabrication
methods that create metallic contacts to a small number of conjugated or-
ganic molecules allow the study of the basic transport mechanism of these
systems and will provide direction for the potential development of molecular-
scale electronic systems [1]. The concept is now realized for individual com-
ponents, but the economic fabrication of complete circuits at the molecular
level remains challenging because of the difficulty of connecting molecules
to one another. A possible solution to this problem is ‘mono-molecular’ elec-
tronics, in which a single molecule will integrate the elementary functions and
interconnections required for computation [2]. Indeed, the primary problems
facing the molecular electronics designer are measuring and predicting elec-
tron transport. That is due to the fact that molecular electronics is strongly
dependent on the quality and nature of the contacts [3]. Ideally, these con-
tacts should be ohmic so that any non-linearity in the conductivity of the wire
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can be correctly attributed and studied. They must also be low in resistance
to ensure that the properties measured are those of the molecule and not
those of the molecule-contact interface. Moreover, the medium surrounding
and supporting the molecule must be several orders of magnitude more insu-
lating than the molecule itself because the contact area of the support with
the electrical contacts is often much greater than that between the electrical
contacts and the molecule [4].
Nevertheless, the contact problem can be turned into a challenge. Even with
the intrinsic barrier that the contacts represent, barriers can be strategi-
cally used to favor the design of specific devices [5]. However, this requires
a more detail account of the atomic structure of the interface. Green func-
tion and density functional theories [6] are the typical instruments to char-
acterize transport through single molecules clamped between two metallic
contacts. These very same instruments may even be adopted for calculat-
ing electromechanical switch behaviors [7] and current-induced forces [8] in
molecular structures.
In this chapter, after a brief overview on charge transport on the molecular
scale (Sect. 2), we provide, in Sect. 3, a general theoretical hybrid method
based on Green function theory and density functional theory (DFT)-based
algorithms. In order to show the presence of contact-dependent features in
the molecular conductance, we introduce, in Sect. 4, three model molecular
devices. The first is a sodium wire (Par. 4.1), where the role of contacts for
a molecular bridge emerges clearly. However, the quality of contacts is not
the only source of alteration of the molecular conductance. In the Par. 4.2,
we show the peculiar effect that carbon nanotube leads might have on a
contacted molecule. Finally, in the Par. 4.3, a pure carbon device, consisting of
two carbon nanotube leads grasping a C60 molecule is studied in a parameter
free DFT calculation.

2 Charge Transport on the Molecular Scale

In mesoscopic electron transport, many interesting interference related and
quantization effects have been found in the past 20 years [9]. Much of the
fundamental theory for mesoscopic systems can be taken over to the descrip-
tion of molecular scale conductance calculations. In both realms, a formu-
lation that includes interference effects due to phase coherence as well as
geometrical effects is needed. It was originally developed by Landauer [10]
for a two-terminal geometry as displayed in Fig. 1. and further extended by
Büttiker [11] to the multi-terminal case. The essential idea of the Landauer
formulation is to relate the conductance to an elastic scattering problem
and, ultimately, to transmission probabilities. The simplest way to derive
this relationship is to consider a ‘molecular’ region connected to two ballistic
leads, which are connected to electronic reservoirs at the chemical potentials
µL, µR, see Fig. 1. It is assumed that electrons entering the reservoirs do
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Fig. 1. Schematic representation of a two-terminal device. The scattering region
(enclosed in the dashed-line frame) with transmission probability T (E) is connected
to semi-infinite left (L) and right (R) leads which end into electronic reservoirs
(not shown) at chemical potentials µL, µR. By applying a small potential difference
electronic transport will occur. The scattering region or molecule may include in
general parts of the leads (shaded areas). This is necessary for the description of
real systems, where the surface topology may be modified as a result of relaxation
or reconstruction processes. This may introduce additional scattering due, e.g., to
surface states.

completely lose their phase coherence. As stated in Ref. [12] assuming semi-
infinite leads is enough to warrant that no electron exiting the scattering
region will reenter it with the same phase, so that an explicit modeling of
the reservoirs is not necessary. In equilibrium µL = µR, but if an infinitesi-
mal voltage eV = µL − µR is applied a non-equilibrium situation is induced
and a current will flow. The scattering region is characterized by the energy-
dependent transmission coefficient T (E). In the zero-temperature, linear re-
sponse (eV → 0) regime it is found [13] that the proportionality relation,

g =
e2

πh̄
T (EF), T =

NF∑

m,n=1

|tmn|2 (1)

holds. EF is the Fermi energy of the whole system in equilibrium and the
transmission amplitudes tmn describe the scattering of one electron from
channel n in the left lead to channel m in the right lead. They can be ex-
tracted, e.g., from the scattering matrix. The sums run over all NF open
channels at the Fermi level (whose number is assumed to be equal on both
sides). Channels (transverse modes) appear due to the finite cross section of
the leads which induces quantization of the electronic states perpendicular to
the direction of current transport. For the special case of ideal transmission,
i. e.

∑

n |tmn|2 = 1 ∀m, the conductance is simply proportional to NF with
the von Klitzing conductance quantum gK = e2/(πh̄) as the proportionality
factor. Thus, g/gK shows unit steps as a function of NF. This is the well-
known fact of conductance quantization [13], shown experimentally by van
Wees et al. [14] and Wharam et al. [15].
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In molecular conductance, in the case of strong coupling, it is the electronic
structure of the molecule influenced by the leads that determines the trans-
mission properties which in turn play the decisive role for electron transport.
The calculation of the coupling to the leads together with the calculation of
the electronic structure will be dealt with in the following using DFT-based
methodology.

3 Method

For a general scattering region where inelastic effects are included, Meir and
Wingreen [16] used non-equilibrium Green functions to derive an expression
for the current which reduces to Eq. (1) in the elastic case. An advantage
of their derivation is that an explicit connection to the Green function G

of the scattering region dressed by the presence of the leads is established.
The latter are introduced as self-energy corrections into the bare ‘molecular’

Green function G
−1

= GM−1
+ ΣL + ΣR, The result for the transmission

probability is then given by [16]

T (E) = 4 Tr
{
∆L(E)G(E)∆R(E)G†(E)

}
, (2)

where ∆L,∆R are the spectral density describing the coupling of the scat-
tering region to the α(=L,R)-lead given by

∆α =
i

2

(
Σα

(
E + i0+

)
− Σ†

α

(
E + i0+

))
,

and the trace is to be taken over states in the scattering region. The Green
function GM is in general defined as the inverse operator (E + i0+ −HM)−1,
for some suitable ‘molecular’ Hamiltonian HM. Similar expressions have been
derived by Fisher and Lee and Todorov, Briggs and Sutton [17]. In a seminal
paper Szafer and Stone have derived the Landauer result, Eq. (1) from Kubo’s
linear response theory [18].
As mentioned above, only components of the Green function in the Hilbert
subspace associated with the scattering region, which we will denote as ‘the
molecule’ from now on to keep in mind that transport through molecular scale
systems is the main issue to be addressed here, are needed. Notice, however,
that the molecule may also include some atoms belonging to the leads, see
Fig. 1. This will be the case when investigating real systems, where the surface
atomic structure of the leads is explicitly taken into account (clean surfaces
are usually energetically unstable, so that upon structural relaxation the sur-
face topology may be modified and this will introduce additional scattering).
From the full Green function of the open (infinite) system consisting of the
leads plus the molecule it is possible to extract G using projector operator
techniques [19]. In order to do so, one partitions the whole system into three
components as shown in Fig. 1., where a left electrode, the molecule, and
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a right electrode are depicted. The full associated Hamiltonian matrix (in a
suitable basis representation) can then be formally written as

H =






HL VL,M 0

VL,M†
HM VR,M

0 VR,M†
HR




 . (3)

The matrices VL,M,VR,M couple atoms belonging to the left(right) leads
to the molecule, and it has been assumed that no direct lead-lead coupling
exists. Notice that HL(R) are infinite dimensional sub-matrices. By means of a
operator projecting onto the ‘molecular’ subspace, we can write the resulting
M -dimensional matrix equation as:

(

zSM − HM − ΣL (z) − ΣR (z)
)

G (z) = 1, z = E + i0+, (4)

where SM is the overlap matrix for the general case of a non-orthogonal basis
set. The energy-dependent self-energies ΣL,ΣR include the coupling to the
leads as well as information on the electronic structure of the leads. For the
α-lead, they are given by

Σα (z) =
(
z Sα,M − Vα,M

)† Gα (z)
(
z Sα,M − Vα,M

)
. (5)

The matrix Sα is the overlap matrix element between molecule atoms and
the α-lead atoms and Gα(z) is the α-lead surface Green functions. Since the
coupling matrices are in general short-ranged they will eliminate all contri-
butions coming from atoms other than those closest to the molecule. Hence,
only surface Green functions are usually needed.
We would like to stress that Eqs. (1) and (2) are only valid in the case that
inelastic processes in the scattering region can be completely neglected. Oth-
erwise no simple relationship between conductance and transmission can be
obtained. A typical example where electron-electron interactions are decisive
are quantum dots. There, the scattering region is weakly coupled to the leads
so that the coupling-induced level broadening will be much smaller than the
charging energy. Hence, electron interaction effects leading, e.g., to Coulomb
blockade phenomena should be included in the description of quantum trans-
port [20].
At this point we are led to the issue of characterizing the electronic structure
of the molecule as well as of the leads. If we only focus on the essential physics,
some kind of model Hamiltonians can be used [21]. However, if real situations
are addressed where the knowledge of the detailed electronic structure is
important, the use of more realistic computational schemes is unavoidable.
From the point of view of electronic structure calculations three classes of
approaches have been implemented for quantum transport calculations:

(i) Semiempirical or empirical tight-binding (TB) schemes, e.g. (extended)
Hückel Hamiltonians, where the matrix elements are fitted to experiments
or to first-principle calculations [22].
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Fig. 2. A five sodium atom isolated wire. The HOMO density is plotted in arbitrary
units.

(ii) First-principles or ab initio approaches like Hartree-Fock and (DFT) [23].

(iii) Schemes which combine some elements of points (i) and (ii) in first-
principles parametrized tight-binding Hamiltonians as it is the case for
TB-DFT [7,24,25,26] methods.

Concerning the last class mentioned above, a computational scheme has been
developed in Ref. [25] which combines a DFT-parametrized TB approach
with the Landauer formalism to study the electronic transport properties of
sodium atomic chains [24], small sodium clusters [25], carbon-based molec-
ular junctions [7] as well as to simulate Scanning-Tunneling-Spectroscopy
experiments on organic molecules [26]. The TB-DFT scheme relies on a rep-
resentation of the electronic eigenstates of the system within a non-orthogonal
localized basis set, usually taken as a valence basis. The many-body Hamilto-
nian is then approximately represented by a two-center tight-binding Hamil-
tonian. The matrix elements, however, are calculated numerically, avoiding
the introduction of empirical parameters as in conventional TB approaches.
We will now discuss some of the applications of this combined scheme.

4 Applications to Molecular Devices

4.1 Focusing on the Bridge Molecule: Sodium Wires

In this section, we review the numerical results for the resistance R = 1/g
of sodium atomic wires as a function of the electrode-wire separation d and
of the wire length [24]. The bond length in the wires was fixed at 6.00 aB,
which approximately corresponds to the equilibrium distance of a Na-dimer
(deq=5.67 aB). For wires with more than four atoms dimerization of the wire
is expected due to a Peierls transition. Such effects will not be considered
here.
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Fig. 3. Dependence of the resistance on the length of the atomic sodium wire for
different electrode-wire separations. Dashed lines (connecting the squares) corre-
spond to a resistance calculated with only the 3s-valence orbitals in the wire.

In Fig. 3., the dependence of the resistance R = 1/g on the number of atoms
in the chain is displayed for three different values of d. The result of Lang,
who stated that RN=1 > RN=2 [27], is only found, in our approach, in the
case of strong coupling between the chain and the electrode. Concerning the
coupling strength, there exists a critical value dcrit where both the single atom
and the dimer have approximately the same resistance. This behaviour can be
understood by inspecting the transmission spectrum, as shown in Fig. 4. The
value, the linear resistance of the wire acquires, depends sensitively on the
position of the Fermi level EF with respect to the modified eigenenergies of the
wire. In order to distinguish between the bare eigenenergies we have displayed
the free wire density of states (DOS) together with the corresponding T (E)
for two different values of the electrode-wire separation. Intuitively one would
expect that EF lies in the HOMO-LUMO gap for a Na-dimer (the HOMO is
twice occupied) and would almost touch the singly occupied HOMO in the one
atom case. This picture is, however, only exact in the case of a weak coupling
to the electrodes, where the position of the eigenvalues of the wire remains
approximately the same as for an isolated wire and the broadening induced
by the coupling is smaller than the energy spacing between the eigenvalues.
For d = 6.2aB, however, the eigenstates of Na1 and Na2 are strongly broad-
ened and shifted by the coupling to the leads. The HOMO and LUMO (3-
fold degenerate) of the single atom cannot be clearly resolved any more but
evolve into a rather broad single peak. Especially at EF the transmission for
a single atom becomes smaller than for the dimer. With increasing distance
the coupling to the electrodes is reduced and thus the renormalization and
broadening of the eigenstates become weaker. At d = 7.0aB, the HOMO and
LUMO of the dimer are already ‘resolved’ and the transmission T (EF) within
the gap is reduced.
In this section, we have introduced as possible bridge molecule a sodium
wire. There the simplest assumption has been made for the lead self-energy
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entering in the calculation, a semi-infinite linear chain with a semi-elliptical
spectral density ∆, obtained by Newns [28]. What are the effects which might
arise from using nanoelectrodes such as carbon nanotubes?

4.2 Focusing on the Leads: Carbon Nanotube Leads

Carbon nanotube (CNT) conductors have been in the focus of intense exper-
imental and theoretical activity as another promising direction for building
blocks of molecular–scale circuits [29,30]. Carbon nanotubes exhibit a wealth
of properties depending on their diameter, on the orientation of graphene roll
up, and on their topology, namely whether they consist of a single cylindrical
surface (single–wall) or many surfaces (multi–wall) [31,32]. Carbon nanotubes
have been recently used as wiring elements [30], as active devices [30,33], and,
attached to scanning tunneling microscope (STM) tips, for enhancing their
resolution [34]. With a similar arrangement the fine structure of a twinned
DNA molecule has been observed [35]. However, CNT–STM images seem to
strongly depend on the tip shape and nature of contact with the imaging
substrate [36]. If carbon nanotubes are attached to other materials to build
elements of molecular circuits, the characterization of contacts [37] becomes
again a fundamental issue. This problem arises also when a carbon nanotube
is attached to another molecular wire, a single molecule or a molecular cluster.
In this section we present analytic results for the transmission through a
CNT-molecule-CNT system. In particular we analytically derive the spectral
density of a single wall armchair carbon nanotubes, needed for calculating
the transmission. A possible configuration is depicted in Fig. 5. Here a N
atom molecule has been adopted as bridge molecule. However, the results we
obtain are valid for any bridge sub conditio that the CNTs are contacting
the molecular complex only via two single atomic contacts (labelled here as 1

−2 0 2 4
0

20

40

60

−2 0 2 4
E−EF (eV)

−2 0 2 4
0

0.2

0.4

0.6

0.8

1

N=1
N=2

d=6.2 aB

DOS

d=7.0 aB

 T(E)  T(E)

Fig. 4. The transmission coefficient as a function of energy for one and two atoms
between the electrodes for two different electrode-wire separations. The left panel
shows the DOS of the isolated wires. Only the low-energy part of the spectra is
shown.
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1, . . . . . . ,N
︸ ︷︷ ︸

electrode molecule electrode
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Fig. 5. Schematic representation of the N atom molecule–carbon nanotube hybrid
with single (bottom) and multiple (top) contacts. on–site energies εα=L,R are chosen
to be zero.

and N). For the system under investigation, where only the two atoms of the
molecule are coupled to the leads, the formula for the transmission simplifies
to [38,39]

T (E) = 4 ∆L(E)∆R(E)
∣
∣GM

1N (E)
∣
∣
2
/det (Q) , (6)

where the spectral densities ∆L and ∆R are the only non-zero elements
(
∆L
)

11
and

(
∆R

)

NN
, respectively, of the matrices ∆. The matrix element

∆L(R) is the spectral density of the left (right) lead. It is related to the semi-
infinite lead Green function matrix GL(R). It is minus the imaginary part of
the lead self-energies (per spin),

Σα = Λα − i ∆α =
∑

mα,m′

α

Γm
α

Γ ∗
m′

α

Gα
m

α
m′

α

, (7)

with α = L,R. Owing to the causality of the self-energy, its real part Λ can
be entirely derived from the knowledge of ∆ via a Hilbert transform. Finally
the determinant of Q = 1 − ΣGM has to be calculated.
The rhs of Eq. (6) coincides with formulas used to describe electron transfer
in molecular systems [21,40]. The above relationship between the Landauer
scattering matrix formalism on the one side and transfer Hamiltonian ap-
proaches on the other side has been worked out in the recent past [41] show-
ing, de facto, their equivalence. This enables us to make use of the formulas
from a Bardeen-type picture in terms of spectral densities, which is often
convenient for an understanding and analysis of the results obtained.
In calculating the spectral function, we make use of the assumption of iden-
tical left and right leads and drop the self-energy indices in Eq. (7). Since a
π orbital representation was found to give good agreement with experiments
(even quantitatively) [31], the Hamiltonian at hand can be assumed discrete.

We can write the lattice Green function G = (E + i0+ − H)
−1

in matrix
form by rearranging the two dimensional n lattice coordinate with honey-
comb underlying structure in the tight-binding Hamiltonian representation.
The boundary conditions are imposed on two cuts parallel to a lattice bond
so that the surface of a semi-infinite CNT contains 2ℓ atoms for a so-called
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(ℓ, ℓ) armchair CNT. We assume the x direction to be parallel to the tubes
(and to the transport direction) and y to be the finite transverse coordinate
(see Fig. 5.). The latter is curvilinear with ny spanning the 2ℓ sites with
periodic boundary conditions.
The lattice representation of the lead Green function is needed in the calcula-
tion of the self-energy contribution. It can generally be written by projecting
the Green operator onto the localized state basis, ψkx,ky

(nx = border, ny) =
χkx

φky
(ny), of the semi-infinite lead:

Gn
y
n′

y
(E) =

〈
ny

∣
∣
(
E + i0+ − H

)−1 ∣
∣n′

y

〉

=
∑

kx,ky

χkx
φky

(ny)χ∗
kx
φ∗ky

(n′
y)

E + i0+ − Ekx,ky

. (8)

The eigenvalues of the tight-binding Hamiltonian

E±

(
kj

x, j
)

= ε± γ

√
√
√
√1 + 4 cos

(
j π

ℓ

)

cos

(

kj
xa

2

)

+ 4 cos2

(

kj
xa

2

)

, (9)

are obtained in a basis set given by symmetric (+) and antisymmetric (−)
site configurations of the graphene bipartite lattice, corresponding to π and
π∗ orbitals, respectively [42]. The longitudinal momentum is restricted to the
Brillouin zone, −π < kj

xa < π, and the transverse wave number 1 ≤ j ≤ 2ℓ
labels 4ℓ bands, as many as the number of atoms in the unit cell of a (ℓ, ℓ)
CNT. The two bands corresponding to j = ℓ are singly degenerate. They are
responsible for the metallic character of armchair carbon nanotubes (these
two bands cross at the Fermi level E = ε for kℓ

xa = ±2π/3). Also the two
outermost bands corresponding to j = 2ℓ are singly degenerate, while the
other remaining (4ℓ − 4) bands are collected in (2ℓ − 2) doubly-degenerate
dispersion curves.
The single-particle Green function in a lattice representation for two sites
belonging to the same sub-lattice can be written as

Gn
y
n′

y
(E) =

a

2πℓ

∑

j,β

∫ π/a

−π/a

dkj
x

sin2
(
kj

xa
)
ϕj

(
ny

)
ϕ∗

j

(
n′

y

)
,

E + i0+ − Eβ

(

kj
x, j
)

=
1

2ℓ

2ℓ∑

j=1

ϕj

(
ny

)
G̃j (E)ϕ∗

j

(
n′

y

)
, (10)

where ϕj(ny) = exp(ikj
ynya), with kj

ya = πj/ℓ, and 1 ≤ j ≤ 2ℓ. Note that
in Eq. (10), ny and n′

y should be either even or odd (that is they should
belong to the same sublattice). The semi-infinite longitudinal Green function
is given by

G̃j (E) =
a

8π

∑

β=±

∫ π/a

−π/a

dkj
x

sin2
(
kj

xa/2
)

E + i0+ − Eβ

(

kj
x, j
) .
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Fig. 6. Left panel: the normalized spectral density for a semi-infinite (ℓ, ℓ) CNT
lead in the SC configuration; it corresponds to the LDOS at any atom site at the
cut of the CNT lead. For comparison the dispersion relation and the LDOS of
an infinite (ℓ, ℓ) CNT are shown in the middle and right panel respectively. Solid
lines in the dispersion relation panel indicate doubly degenerate bands, dashed lines
singly degenerate bands. Here ℓ = 10, and on-site energies and hopping terms refer
to α = L, R-leads.

The integral can be worked out analytically by extending kj
x to the complex

plane and adding cross-cancelling paths (parallel to the imaginary axis) along
the semi-infinite rectangle in the half plane Im kj

x > 0 and based on the
interval between −π/a and π/a. The closing path parallel to the real axis
gives a real contribution linear in energy. This generalizes the approach by
Ferreira et al. [43], recently adopted for obtaining an analytical expression
for the diagonal Green function of infinite achiral tubes, to the case of semi-
infinite CNTs. The determination of the poles inside the integration contour,
given by

−2 cos

(

qj
βa

2

)

= cos

(
jπ

ℓ

)

+ β

√
(
E − ε

2γ

)2

− sin2

(
jπ

ℓ

)

,

allows for the calculation of the residues and thus of the surface Green func-
tion. One finds

G̃j (E) =
1

2γ

E − ε

2γ









1 + i

sin

(

qj
β∗

a

2

)

√
(
E − ε

2γ

)2

− sin2

(
jπ

ℓ

)









, (11)

where the choice of the contributing pole through the branch parameter β∗ =
sign (E − ε) has to be taken into account. The LDOS, obtained from the
imaginary part of the surface Green function after Eq. (11) is plugged into
Eq. (10), is shown in Fig. 6. It clearly differs from the LDOS of an infinite
CNT as depicted for comparison in the right panel. As for the case of the
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SLT the pinning of the longitudinal wave function at the surface of the semi-
infinite systems cancels all border zone anomalies when qj

±amatches multiples
of 2π. In infinite SLTs these states are the only resonant states (van Hove
singularities) so that the surface LDOS of a semi-infinite SLT never diverges.
On the contrary, in CNTs there are states with zero group velocity outside
the border zone which are responsible for the singularities of the spectral
density of semi-infinite CNTs (left panel of Fig. 6.). The self-energy for a
CNT lead is more complicate than the one for a SLT owing to the missing
equivalence of the sites belonging to the two different sub-lattices. However,
since the longitudinal part of the Green function, Eq. (11), is the same for all
diagonal and off-diagonal terms of the surface Green function, the self-energy
can still be cast into the form

Σ =
1

2ℓ

2ℓ∑

j=1

G̃j(E)ηj/ℓ [Γ ] .

However, for the calculation of

ηj/ℓ [Γ ] =

∣
∣
∣
∣
∣

2ℓ∑

m=1

Γmϕj(m)

∣
∣
∣
∣
∣

2

, (12)

one has to specify the sub-lattice components of the transverse wave function
and whether they belong to a bonding or anti-bonding molecular state. Again
the distribution of the Γm contacts is needed in oder to calculate the weight
η and thus the self-energy. Eq. (12) simplifies considerably in the SC case:
η = Γ 2. Since η is uniform in j, the self-energy is simply proportional to
the diagonal semi-infinite Green function and, as a consequence, the spectral
density is proportional to the local density of states (Fig. 6.). The MC case
(Γm = Γeff/

√
2ℓ) is also easily tractable leading to a sum rule over the possible

conducting channels. However, a direct proof is provided by the intuitive
consideration that only the π-bonding state can contribute to the MC spectral
density (all the other states have a non-constant spatial modulation provided,
e.g., in Ref. [44]). Following our notation, the π-bonding state corresponds
to j = ℓ. The two different lead lattice structures carry the same physical
information only in the MC limit case [38].

4.3 Focusing on the ‘Molecule Plus Lead’ Complex: a Pure

Carbon Device

In this section we focus on the combination of CNT-leads with a realistic
molecular cluster acting as the central molecule. Especially interesting is the
case of a monovalent carbon cluster which makes the system an “all-carbon”
device. Therefore, we studied a single C60 molecule bridging two single-wall
metallic (5,5) carbon nanotubes (CNT). The CNT were taken symmetric with
respect to the plane through the center of mass of C60 and perpendicular to
the CNT cylinder axes (see left panel of Fig. 7.).
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scattering  region

(5,5) CNT (5,5) CNTd (1)                      (2)                      (3)

Fig. 7. Geometric configuration of the carbon molecular junction. A C60 molecule
bridges two (5,5) CNTs. The right panel represents schematically the different ori-
entations of C60 with respect to the surface cross-sections of the nanotubes (e.g. the
left panel geometry corresponds to orientation (1)). The nanotube symmetry axis
is depicted by a cross inside a circle.

The central aim of [7] was to exploit the sensitivity of electron transport
to the topology of the molecule/electrode interface in the proposed system.
In this pure carbon system, charge transfer effects will be negligible. The
Fermi level of the whole system will therefore lie within the HOMO-LUMO
gap of the isolated C60. Therefore, the electronic transport will be mainly
mediated by the overlap of the tails of the molecular resonances within the
HOMO-LUMO gap of C60.
The key problem we addressed was how severely orientational effects do in-
fluence the electronic transport. To this end several possible orientations of
the C60 (depicted by the polygon(s) facing the tube symmetry axis in the
right panel of Fig. 7.) have been considered for a fixed distance between the
molecule and the tubes. For the sake of comparison, structurally unrelaxed
and relaxed molecular junctions were considered. The basic results are dis-
played in Fig. 8., for both relaxed and unrelaxed structures. Surprisingly,
at fixed distance, just an atomic scale rotation of the highly symmetric C60

molecule induces a large variation of the transmission at the Fermi energy
by several orders of magnitude. This can be seen in Fig. 8.(right panel) for
three different orientations with maximum, minimum and one intermediate
value of T (EF). As can be seen in Fig. 8.(left panel), neglecting relaxation
decisively influences the transmission properties of the molecular junction.
This shows up as a different and less smooth behaviour of the transmission.
The qualitative difference is related to the presence of dangling bond states
on the CNT surfaces. Such states usually lie within a gap (a similar situa-
tion as that found, e.g., in semiconductor surfaces), in this case the HOMO-
LUMO gap of the isolated molecule. They lead to the oscillatory behaviour
in the transmission for unrelaxed junctions. Upon relaxation these states are
partly saturated or they rehybridize, moving away from the middle of the
gap. However, some of them may still lie just above the HOMO or just below
the LUMO of C60, giving some contribution to the transmission within the
gap.
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Fig. 8. Transmission results for both unrelaxed (left panel) and relaxed (right
panel) configurations. The tube-tube distance d is fixed at 0.93 nm. Numbers indi-
cate different molecular orientations as depicted in the right panel of Fig. 7.

The results for the relaxed structures reveal that, at the Fermi energy, the
pentagon configuration (3) has a transmission lower by about three orders of

magnitude than configuration (2). This fact could possibly be exploited in an
electronic switching device on the nanoscale, as manipulation of fullerenes by
using STM or atomic force microscope tips is becoming a standard technique
in the field [45].

5 Discussion and Conclusions

Summing up our results, we can conclude that modelling transport at the
molecular scale cannot avoid to go through an accurate structure calculation
of the smallest element in the device, namely, the molecular bridge and part of
the attached leads. Ab initio methods, although approximated on the DFT-
LDA level description, provide thus a fundamental input to be integrated in
standard quantum transport techniques. The hybrid quantum-transport–ab-
initio method, reviewed in Sect. 3, provides the necessary playground for a
precise description of linear transport in a two terminal device. The extention
to transistor like configurations goes straightforwardly. On the other hand,
the treatment of the non-equilibrium physics deserves special care, e.g. by
using non-equilibrium Green functions and self-consistency arguments [46],
which goes far beyond the limits of this short review.
Two main approximations have been tacitly assumed throughout this work:
we have effectively employed (1) a single electron picture (2) in the limit of
coherent transport. In doing so, we have been motivated by the fact that
small molecules are typically well adsorbed to the leads providing a strong

coupling. Here lies also the main difference with the ‘artificial molecules’ (ob-
tained by confining the twodimensional electron gas at the interface of semi-
conducting heterostructures). In such mesoscopic devices, the electron states
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are strongly localized, thus the addition of any individual electron to the con-
ducting island gives rise to the typical Coulomb staircase in the device I-V
characteristics [20]. Finally, the C60 calculations (Par. 4.3) have shown that
the molecule clamped between the two mesoscopic leads undergoes to strong
structural modification. Neglecting this effect, i.e., without properly relaxing
the structure, leads to a substantial misestimation of the linear conductance.
The modification of the flexible molecular structure under the effect of large
bias voltages, and a direct computation of charge transfer problems are other
important issues which were left out from the present work (for a recent
account in this direction see [8]).
We can then conclude that different levels of investigation require different
theoretical sophistication. A (semi)empirical description can be extremely
useful in getting the flavor of the most qualitative effects, but can also be
misleading. DFT codes may help in device parameter free calculations and
have closer relevance to experiments. Besides that, it is evident that contacts
can change dramatically the conductance profiles, and further progress in
modelling is needed. It might indeed help to separate contact effects from
‘molecular’ effects. As far as leads are concerned, we have shown that low
dimensional leads such as CNT do probe the conductance. Having a reliable
model for the lead self-energy might be the key for cleaning (de-convoluting)
spurious measurements.
Finally, we think that the addition of the richer physical environment that
large molecules do experience might be easily scalable on top of the pre-
sented transport calculation scheme. This might be the case for molecular
vibrations, and time dependent effects [47]. More difficult would be the ex-
tension to comprise electron-electron interactions [48,49] and non-equilibrium
relaxation. Attempts to cope with this latter challenge have to include a
self-consistent or combined treatment of electronic transport and structural
optimization [8].
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