Molecular electronic devices are the upmost destiny of the miniaturization
trend of electronic components. Although not yet reproducible on large scale,
molecular devices are since recently subject of intense studies both
experimentally and theoretically, which agree in pointing out the extreme
sensitivity of such devices on the nature and quality of the contacts. This
chapter intends to provide a general theoretical framework for modelling
electronic transport at the molecular scale by describing the implementation of
a hybrid method based on Green function theory and density functional
algorithms. In order to show the presence of contact-dependent features in the
molecular conductance, we discuss three archetypal molecular devices, which are
intended to focus on the importance of the different sub-parts of a molecular
two-terminal setup.Comment: 17 pages, 8 figure