A coagulation-decoagulation model is introduced on a chain of length L with
open boundary. The model consists of one species of particles which diffuse,
coagulate and decoagulate preferentially in the leftward direction. They are
also injected and extracted from the left boundary with different rates. We
will show that on a specific plane in the space of parameters, the steady state
weights can be calculated exactly using a matrix product method. The model
exhibits a first-order phase transition between a low-density and a
high-density phase. The density profile of the particles in each phase is
obtained both analytically and using the Monte Carlo Simulation. The two-point
density-density correlation function in each phase has also been calculated. By
applying the Yang-Lee theory we can predict the same phase diagram for the
model. This model is further evidence for the applicability of the Yang-Lee
theory in the non-equilibrium statistical mechanics context.Comment: 10 Pages, 3 Figures, To appear in Journal of Physics A: Mathematical
and Genera