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Scaling exponents of the longitudinal and transversal velocity structure functions in numerical
Navier—Stokes turbulence simulations with Taylor—Reynolds numbers uRdgc=110 are
determined by the extended self similarity method. We find significant differences in the degree of
intermittency: For the sixth moments the scaling corrections to the classical Kolmogorov
expectations aré§'5=—0.21t 0.01 and5§g=—0.43t 0.01, respectively, independent Bfe, .

Also the generalized extended self similarity exponentg= 6¢,/6¢, differ significantly for the
longitudinal and transversal structure functions. Within the She—Leveque model this means that
longitudinal and transversal fluctuations obey different types of hierarchies of the moments.
Moreover, the She—Leveque model hierarchy paramgerand BT show small but significant
dependences on the order of the moment. 1897 American Institute of Physics.
[S1070-663(197)03412-Q

I. INTRODUCTION Recently, multi-probe and optical techniqgues made

) ) the transversal structure functions experimentally
One of the central issues in turbulence theory has alwayg..essibld:6-1° In addition. also recent numerical simula-

been whether the velocity structure functions deviate fromgns of decaying turbulenébhave focused on the difference
Kolmogorov's classical expectatidrf. For many years the in scaling OfDL(r) and DT(r)
P p\' /-

community focused on thivngitudinal structure function, The results of all this work seem to be contradictory.
D5(r) =([(u(x+1)—u(x))-&-1P)=((u"(r)?), (1)  While all authors agree th&#) both ; and{;, show signifi-

N . i cant deviations from the classical expectatjp@, and that
whose inertial subrangé¢SR) scaling exponents we define as (ii) 55 is well fitted by the She—Leveque modélSL

{5 (Here ¢ is the unit vector in the direction) The reason model”) 2 saying that

for this was that in many experiments Taylor’'s frozen flow '

hypothesi$™ had to be employed and therefore, the trans- p p

versal structure functions, ¢=37Co 5(1—,33)—(1—,3”) : 6)

Do =([(ux+nN=ux)-&I)=(0"(r)", @ .
_—_— _ , with Co=2 and B=(2/3)'3, they disagree on whether
e, being a unit vector perpendicular to could not be ob- .. _ .T L T
{p=Lp Or {p# Ly

tained. We denote the scaling exponent®d(r) as{; .

A priori, there is no reason to expe= ¢, for general
p. The probability density functiofPDF of thelongitudinal
velocity differencev'(r) is skewed because information
from x to x+r is conveyed by the velocity difference itself

L H L
and odd moments o-(r) thus do not vanishDy#0. In o riea) turbulence by Boratav and Peéiz.On the other

particular, for homogeneous and isotropic turbulence th?‘land the recent experiments by Camuetsal® and Kahal-
third order longitudinal structure function is connected to the ' 13 4 ; O I L
| did not give significant deviations betweéy,

erraset a

second order one by the Howard—von Karman—Kolmogoroy, T ; 4 T
. nd 5, and experiments by Noullezt al.” found 6, com-

structure equatioh? ¢p y y p

parable to theSgFL, found in other experiments. For a simple

van de Water's grodf finds that in shear flow the
(moduli of the transversal intermittency corrections
8¢y={p—p/3 are significantly larger than the longitudinal
ones 8/,={;—p/3, p>3. The same is found for jet flow
' turbulence by Camussi and Belfzand for decayingnu-

DL(r)=— fer+6yiDL(r). 3) quantification of the intermittency corrections it is common

3 5 dr 2 to give 6{g. We do so in table | for the addressed experi-
Here, € is the mean energy dissipation rate amds the ~ Ments and simulations. o

kinematic viscosity. The PDF of theansversalvelocity dif- e would like to caution the reader of a too simplistic

ferencevT(r), on the other hand, is symmetric and conse-interpretation of table 1. The detailed definitions of hi T

quently all odd order moments vanisB.(r)=0, p odd slightly differ from experiment to experiment. In all low
P ' ' . <11 :

Only the second order longitudinal and transversal structur&€ynolds number experlmeﬁf's the scaling exponents

functions are expected to scale the sameM&yn the large  could only be determined by employing the extended self

. . . . . 14 .
Reynolds number limit since for isotropic flow incompress-Similarity (ESS method introduced by Benzit al.™ In this

ibility implies method the structure function®,(r) are plotted against
J D% (r), where D3(r) is the third order structure function
r defined with themodulusof the velocity difference and is
Ty (L AL
D2(r)=Da(1+ 5 gy Da(r). @ experimentally found to scale with roughly the same expo-
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TABLE I. Intermittency correctionﬁfg and 552 (see the text for the definitigrfor the longitudinal and
transversal sixth order structure functions for various numerical and experimental flows.

Reference Flow Re, — 8¢ - 8&; Remark
van de Wateet al® Shear flow up to 600 0.18-0.20 0.27-0.31  Normalized

Camussi and Ben'A Jet flow 250 0.25 0.38 ESS
Camussiet al® Wind tunnel flow 37 0.190.03 0.22:0.03 ESS
Boratav and Pel? Decaying numerical flow  ~100 0.23 0.43 ESS
Noullez et al* Jet flow up to 600 - 0.25+0.10 ESS
This work Forced numerical flow 110 0.2D.01 0.43:0.01 ESS
This work Forced numerical flow 70 0.20.01 0.43:0.01 ESS

nent asD4(r), which includes the sign of(r).!® The ISR  ing of longitudinal and transversal structure functions the
scaling exponent of such a plot is henceforth denoted asiore remarkable.

é,=1_pl{5 . Asin the ISR§'3'=1 according to the structure The second point we examine is whether these different
equation(3), one expectsty={p, if (3"=¢5. In experi-  intermittency correctionsé; and 8£; correspond to differ-
ments, however, there are always small deviations fronenthierarchiesof the moments. Such hierarchies were sug-
{5b=1; therefore, in principlq,ﬁ and 5; could slightly dif-  gested by She and Leveddédor the r-averaged energy dis-
fer; see also Ref. 16. For the transversal structure functiosipation ratee, , hamely

D§T(r) there is no known relation as equati¢8). Indeed, 8

van de Water's group findg% "=1.08 and they givenor- (e ] (e ()1 g3
malizedscaling exponentg, /{5 which we also calk,. To (eP) P (eP™h (&) '
date, there is no strict theoretical argument why ESS works

so well. Note that for the present numerical simulation itBp constant,e(=1im,_..((e?"*)/(ef)); the SL parameter
doesnot work for odd order structure functions, takeith- B is therefore called the hierarchy parameter. Such a hierar-
out the modulu<® chy means that the corresponding probability distribution

What is the origin of the differences between the resultdunction obeys a log-Poisson statistics.
reported in table 12 One may think that it is the different ~ Ruiz Chavarrieet al** extended the idea of hierarchies
geometry of the flows which causes the differences, in parl© Structure functions. Assuming Kolmogorov's refined simi-
ticular, a different strength of the local shear and of the anlarity hypothesisD ,(r)~(eP’)rP* (Refs. 2,24 the structure
isotropy in the flow. Indeed, the shear in the flow of Ref. 8 isfunction hierarchy can be derived from the SL hierarchy

(6)

considerable and it is known that shear destroys E$%0on (6 ?*%and reads as

the other hand, at leasi¢s was found to be remarkably D D B

. . 6 . . p+l(r) ” p(r) 1-8

independent of different flow geometri€sAlso, the numeri- D.(r) =5l p 0 (D))= 77, (7
P p-1

cal flow of Ref. 11 which clearly showsés# 6¢¢ is highly
isotropic. But it is decaying which in Ref. 20 is speculated toB}y constantD .y(r) =lim,_..(Dp 1(r)/Dp(r)) = (r )=,
be a possible origin of the obserdédliscrepancy between We will calculate the hierarchy paramef@toth for the
longitudinal and transversal intermittency corrections. longitudinal and transversal structure functions, very care-

In this paper we set out to determine the scaling expofully considering the systematic and statistical errors. First,
nents of the longitudinal and transversal structure functionsve find significant deviations betweest and 8. Second,
for forced, statistically stationary numerical Navier—Stokeswe find a slight but also significant dependence of the hier-
turbulence up tdRe,=110. Our motivation is to contribute archy parameterg- and 87 on the order of the moment
to clarifying the contradictionary picture reflected in table I. which is not expected within the SL model.
It is of general interest for the understanding of intermittency ~ The paper is organized as follows: In section II, we de-
whether in Navier—Stokes dynamics not only the velocityfine the numerical flow and carefully check its isotropy, in
field and derivatives thereof are independently scaling fieldsection Il we report on various scaling relations, employing
as analyzed in Ref. 21, but that there are already two indeESS and the generalized ESSESS®'9); we also calculate
pendently scaling velocity fields“(r) andv'(r). Indeed, the hierarchy parameted andB". In section IV we deter-
we will find significant differences for the longitudinal and mine 55'5 and 5§; within a reduced wave vector set approxi-
transversal scaling corrections, namely, to put the result in aation of the Navier—Stokes dynanfies”’ in which very
nutshell, ¢65=0.21+0.01 and 8¢4=0.43+0.01 in very largeRe, can be achieved. Conclusions are drawn in section
good agreement with Boratav's result for decayingV.
turbulence!

_ T.he_quest_|o.n Wh|c_h |mmed_|ately comes up is Whether”' SET UP OF THE FLOW AND CHECK OF ITS

this finding originates in the anisotropy of the flow. There'lSOTROPY
fore, we carefully analyze the degree of anisotropy of the
numerical flow. We find only limited anisotropy and only on The 3D incompressible Navier—Stokes equations are nu-
the very large scale and therefore consider the different scainerically solved on &° grid with periodic boundary condi-
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FIG. 1. Second orderansversalstructure function®(r) for the isotropic
N=96, »=0.006 simulation Re =110, upper, the isotropic N=60,
v=0.009 simulation Re,=70, middlg, and the anisotropicN=60,
v=0.009 simulation Re, =70, bottom. The solid lines are calculated from
the definition(2) of D3 (r) (for the two directions being perpendicularrig
the dashed line is calculated from relati@h which holds for perfect isot-
ropy and homogeneity. For the anisotropic case anisotropy can be seen on
all scales; also the ISR slope deviates from the expected vak€.70.

FIG. 2. Third order structure functioB5(r), directly calculated from the
numerics (long dashefl and from Kolmogorov's structure equatiof3)
(solid). Also shown areD%“(r) (dashed—dottedand |D3(r)| (short
dashegl The data are for the isotrop=96 simulation Re,=110).

largest possible space separation in numerical flow with pe-

tions. Spherical truncation is used to reduce aliasing. For th&odic boundary conditionsdo not equal Zu?) (i=1,2, or

isotropic flow simulationdenoted by “I”) we force the sys- 3) as expected for experimental, isotropic flow ate. We
tem on the largest scal¢wavevectorsk=(0,0+1)/L, find deviations up to 25% which means that the velocities

k=(0,£1,+1)/L, k=(*1,+1,=1)/L, and permutations are still correlated at the space distancerefs. For the
thereoﬂ with a forcing term as, e.g., described in Ref. 27_Iongitudinal velocities we find a positive correlation of about
Units are fixed by picking the length scale=1 and the 25%, for the transversal velocities we find a negative corre-
average energy input rate= the energy dissipation rate lation of about 15%. Geometrically, this means that there is
e=1. The Tay|0r_Reyno|dS number is defined as@ Iarge scale eddy with diameterm. We can not fU”y ex-
R =Uy ms\/ ¥, Where A=uy ;ms/(91U1)ms iS the Taylor clude that the results on scaling exponents we will report on
length andv the viscosity. Most of our results refer =96  are influenced by the flow geometfyeriodic boundary con-
and »=0.006, corresponding to a resolution of scalesditions). They might be different for different geometries
r=27L/N~37 andRe =110. Time integrations of about (€.g., those in experimental floys
140 large eddy turnover times are performed. Averages areWe checked relatiotd) which only holds for isotropy.For
taken over space and time. To check the Reynolds numbet” there are only large scale deviations, for “A” deviations
dependence we also did an isotropie- 60, »=0.009 simu- Show up down to small scales; see figure 1.
lation (240 large eddy turnoversvhich hasRe,=70. For a * We checked the relatio(8), see figure 2. It holds for iso-
less isotropic flow simulatiodenoted by “A”) we only  tropic flow. The agreement is reasonable. However, there
force one modek=(0,0,1)L. This simulation is done for still is no developed inertial subrange due to the 1B .
N=60, »=0.009, for about 210 large eddy turnovers; it hasThe curve looks very similar to the experimental curve for
Re, =70, too. comparableRe, ; cf. Fig. 2 of Ref. 8. In particular, also the
We checked the isotropy of the flow in several ways.experimental curves bend down for largeThe reason for
« We calculated the structure functions for different spacehis of course is that at large scales the fluctuations are
directions and Compared them among each other. For th@aussian and odd order moments vanish. We ascribe the
simulation “I” good agreement is found, for “A” one space deviations in the viscous subrangéSR) to the lack of per-
direction is distinguished as expected from the type of forcfect convergence of odd moments. This difference remained
ing, see figure 1. Moreover, for the isotropic simulation weeven for as long averaging times as 140 large eddy turnovers.
find less than 5% deviations betwe{auﬁ), (u%), and(u%). Also the reIatioan(r)=0 is not yet fulfilled for this low
Note thatD'z'(r =) and D;(r: ) (we usedr=7 as the Re&, though the modulus dl)g(r) is more than one decade
smaller than the modulus rBj'g(r) for all scales, see figure
TABLE II. Energy input and dissipation rates for the three numerical simu-.2.[:0r perfect isotropy, the mean energy dissipation eatan

lations. Th reement bet n the energy input and the total ener :
ations. The good agreement between the energy input and the total energy, .50 a1ed fromany component of the strain tenséiu; ,
dissipation ratee means statistical stationarity. The degree of agreement J

between the last two columns with 1 characterizes the degree of isotropy iff-9-»

the VSR.
€=150((d1U1)%) = F((douy)?). (8)
Energy input €  150{(d,uy)?)  (15/2) »{(d,uy)?)
For the isotropic flow, these relations hold very well see
1, N=96 ! 1.003 0.984 1.021 table Il for the anisotropic one there are deviations up to
I, N=60 1 1.003 0.984 0.994
A, N=60 1 1.004 0.931 0.851 15%.
« For an isotropic flow, the isotropy coefficiefft,
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FIG. 3. Isotropy coefficient(k;), eq. (9), for the simulations “I" (solid)
and “A” (dashed (N=60).

Eq1(ky) —k19Eq1(kq)/ 9Ky
2E4(ky) ’

which compares the longitudinal and transversal energ
spectraE;(k;) and E,(k;) should become # 1(k,) is
shown in figure 3. Indeed, in geneildk,) is closer to 1 for
“1” than it is for “A.” We do not quite understand the
bump aroundk;=2.5 in I(k;) in the isotropic simulation.
We tend to ascribe it to the forcing of the modes
(£1,+1,£1)/L. The wiggles for very larg&, are numeri-
cal artifacts because of the derivative in €g).

I(ky)= ©)

IIl. SCALING EXPONENTS FOR LONGITUDINAL AND .
TRANSVERSAL STRUCTURE FUNCTIONS lg D,

To determine the degree of intermittency in the longitu- _
dinal and transversal structure functions we employ a type of!G: 4. Compensated ESS type plots B/(D3")? vs D3 " (circles and

430,18 . . . D/(D3T)2 vs D3 T (stars. The ISR slopes are, respectiveliés and 6¢; .
ESS by CalCU|atlng generahzed structure functions, The upper part of the figure refers to the isotropic simulation With96,

the lower one to the anisotropic one with=60.
Dp(r)

Gp(r)= (10

(D3(r)P?

and plotting them v®? (“compensated ESS plot®?); see

figure 4. The intermittency exponendgs (the ISR slopes in s carried on into the ISR. In Ref. 11 the different degrees of
figure 4 for the longitudinal and transversal structure func-intermittency were associated with different types of struc-
tions are clearly different; the transversal signal shows congres: Longitudinal fluctuations with strain like structures,
siderably more intermittency. No dependence R®, is  transversal fluctuations with vorticity like structures—which
found. The values ob&g'" for the isotropicRe,=110 and  hoth is in keeping with the definitions of strain and vorticity,
Re, =70 simulations are given in table I. Surprisingly, also respectively.
the anisotropic simulation “A” approximately has the same Let us discuss our results stbT in figure 5 in more
scaling exponents, namely 5&=-0.23+0.01 and detail. The values fors¢; are well described by the SL
6ég=—0.40+0.01; see figure 4. Therefore, in what follows model fit eq. (5) with the SL values Co=2,
we will only focus on the isotropic simulation “I.” Our re- 3= (2/3)"3~0.874 as found for many other isotropic, even
sults for Various&fp determined as in figure 4 are summa- low RQ\ number, experimenta| or numerical ﬂo\%}é‘%!]-SFOf
rized in figure 5. the physical interpretation of the parameters in the SL model
It can be seen that the intermittency correctidd§ and  we refer to Refs. 12 and 22. From a phenomenological point
55; clearly deviate throughout, i.e., transversal velocity fluc-of view, one could consider e@5) simply as a two param-
tuation are much more intermittent than longitudinal oneseter fit of thegp’s_ The two SL parameters for tliensversal
Though it has been known for many years that the transveiscaling exponents can be viewed as a simple way to quantify
sal velocitygradientd,u; is more intermittent than the lon- the degree of intermittency.
gitudinal oned,u,, see, e.g., Ref. 32—in our simulations we We now suggest a method to replace this one two-
have flatnesses off;, =4.9, F,, =70, F;,,-su,  parameter-fit by two one-parameter fits. To do so, we employ
=7.0—it is not trivial that this difference, probing the VSR, generalized extended self similart@ESS>'9 and plotG,,
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TABLE lll. pp¢ for various pairsp,q from GESS type plots as in figure 6.

0.0 i‘;:»;;t\\ By definition,ppyq=p;é. The errors are purely statistical ones. In the third
NI and fifth column, we give th@’s resulting from eq(12). Note that GESS
02 T S |_ implies py s=pp, gPq,s- This relation can be used to check the quality of
, . e GESS.
. -0.4 : -
- S
& . P.g Pra B* P BT
-0.6 .
T © 2,4 —0.5093-0.0004 0.9730.001 —0.5440:0.0011 0.87%0.003
0.8 2,5 —0.2073:0.0002 0.9640.001 —0.2272:0.0006 0.875:0.002
2,6 —0.1176-0.0002 0.95%0.001 —0.1318:0.0004 0.8730.002
1.0 2,7 —0.0774£0.0001 0.9520.001 —0.0884-0.0003 0.872-0.002
2 3 4 5 6 7 2,8 —0.0555-0.0001 0.94%0.001 —0.0645:0.0003 0.8710.003
P 4,5 0.4072:0.0001 0.94%0.001  0.417#0.0003 0.876:0.002
4,6 0.2311%*0.0001 0.94%0.001  0.2423:0.0004 0.869:0.003
. . Lo _ _ 4,7 0.15210.0002 0.93#0.001  0.1625:0.0005 0.868 0.003
z'nGd 555} '(”éfgggﬁﬂiy;ﬁm[ﬁ;ﬂ"ﬁgﬁ, :(c6|r0c)le;0f§1r Thggiihfrg“iexm:ﬁial 48  0.10920.0003 0.9330.002 0.1186:0.0005 0.86%0.003
simulat?ons. The dashéd Iinez are 1-parameter fits Withl?n the SL modei’6 0.56750.0002 0.9350.001  0.5808:0.0005 0.8670.003
where theB’s have been taken fixed from the averaged fits of the GESS typ: 7 0.3736-0.0004 0.93%+0.002 0.3896-0.0008  0.8670.003
plot, i.e., B=0.947 andg"=0.870. The one free fit parameter is thQg e5,8 0.2682-0.0006 0.9280.002  0.2846:0.0010 0.866:0.004
. ) - T 6,7 0.6583-0.0005 0.92#0.002  0.6708:0.0008 0.865 0.004
We obtain the shown remarkably good fits w@h— 9.3 for the longitudinal
data(short dashedand CJ=3.7 for the transversal datbong dashell The 6.8 0.47250.0008  0.924:0.003 0.490+0.0014 0.863-0.005
O 7.8 0.71770.0007 0.9220.003  0.7308:0.0010 0.866:0.005

standard SL fi? 8= (2/3)}3, C,=2 fits the longitudinal corrections also '

pretty well, see the solid line.

vs G4, see figure 6. The slopg, 4 of such a plot is by

definition (10),

:gp—p/3
Pra~ ¢, —q/3

make sure that our numbers are well converged, we also
averaged over only 30, 60, and 90 large eddy turnovers
rather than 140; still, the result is the same; the deviations are
smaller than the error bars.

To quantify the quality to which GESS holds we

checked the relatiom,, s=pp, qpq.s, iMmplied by GESS, for
. variousp,q. Table IIl allows the reader to do so. Neither for
table 1ll. We checked this result very carefully. The Sma”thep;q nor for thep;’q did we find a single example where

error bar_s NPp.q result _from I|_n_ear regressions m_GESS there were deviations larger than the error bars. For example,
plots as in figure 6 and in addition from an averaging over | | _

. o _ -pae=0.1177£0. hich g5 ¢ within th
the different space directions. We also checked this foggﬁsp“"s 0 0.0005 which equalp; s within the error
smallerRe, =70; the deviations in comparison to the results i

iven in table Il are never larger than 0.5%. Moreover, to The error bars up to now stem frostatistics One
g g 270 '’ “would like to be able to judge the size of tlsgstematic

errors. Therefore, in figure 7 we display tloeal slopeof the
curves in figure 6. Both the longitudinal and the transversal

For fixedp, d, py 4. andp, , aresignificantly differentsee

‘ local slope slightly increasémodulus-wisg with increasing
T4 scale(i.e., from left to righ, which shows the limitations of
the above statement that GESS is fulfilled with remarkable
12
©
210
7
0.8
\ ‘ ‘ ] |
-0.22 -0.18 -0.14 %‘ :
|g G(Z) 8 -8 s /W
=<
FIG. 6. GESS type plo&(®)(r) vs G(r) for both the longitudinalsolid) '
and the transversatiashed G-structure functions for the isotropic simula- 9
tions. The slopes of these curves argg,——8.49+0.02 and )
p;2= —7.52+0.04, respectively. The errors result from a linear regression -0.22 -0.14

of every single curve, from weighted averaging of the results for different
space directions, and differeRtg, . The hardly distinguishable lines within
the two bunches of curves are the results for different directions and differ-
ent Reynolds numbeiRe, =110 andRe,=70. The good agreement within  FIG. 7. Local slopes of figure 6 for thRe =110 simulation. The two

the bunches means good isotropy and independence of the scaling exponedtsshed lines are for the two different space directions for the transversal
from Re, . Note that in this type of plot the far VSR collapses into the upper structure functions, the three solid lines are for the three space directions of
left point of these curves. The filled bullets referrte 107 for Re, =110 the longitudinal structure functions. If we calculate the averdgescales

(left ong andRe, =70 (right ong. The open bullet refers to the outer length up tor=2.0~1007) we obtainpgz: —8.360.14 andpgyzz —7.36:0.26.
scaler=L. The arrows refer to 1§ andL, respectively.
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TABLE IV. ph for various pairsp,q determined from the local slope of

the GESS type plots, cf. figure 7. The errors are the systematic ones, stem-
ming from the local slope not being constant. In the third and fifth columns,
we again give the8’s and their errors resulting from e€lL2). Averaging the

B’s determined this way giveg-=0.930 andg"=0.855.

hNE

0.95

p.q Pha B- P BT
2,4 —0.514-0.005 0.9580.016 —0.556-0.012 0.846:0.031
ﬁ 097 . ) 2,5 —0.210-0.003 0.956:0.014 —0.234-0.007 0.8480.027

@ 26 —0.120:0.002 0.9440.012 —0.136:0.005 0.84%0.025

@——5’ 27 —0079:0.002 00946-0.012 —0.092:0.003 0.85%0.023

0.85+ 2,8 —0.057+-0.001 0.936:0.011 -0.067£0.003 0.852-0.021

4,5 0.409:0.001 0.936:0.011 0.426:0.003 0.8510.021

4,6 0.233:0.002 0.93%0.010 0.245:0.003 0.8530.020

4 2 4,7 0.153:0.002 0.92%0.010 0.1650.003 0.855:0.018

. 4,8 0.116-0.001 0.924:0.011 0.126:0.003 0.856:0.018

P 5,6 0.569-0.002 0.926:0.010 0.5820.003 0.855:0.018

57 0.376:0.002 0.9230.010 0.39%0.004 0.85%0.018

5,8 0.270:0.003 0.926:0.011 0.286:0.004 0.8580.018

FIG. 8. The longitudinal and transversal hierarchy parameﬂ{;l;]s(uppeb 6,7 0.660:0.002 0.9190.011 0.672-0.003 0.8580.018

andﬁg,q (lower), respectively. The data are taken from table Ill, i.e., for the 6,8 0.475-0.004 0.91%0.012 0.4910.005 0.85%-0.018

“I" simulation with Re, =110, the averaging time is 140 large eddy turn- 7,8 0.719-0.003 0.9140.014 0.73¥#0.004 0.866-0.019

overs. To get an idea of the size of the error, two error bars are drawn
representing the much largeystematicerrors rather than the statistical
ones. First, we observe that and " are clearly different. Second, a slight

dependence o8- on p,q is seen.

0.8

s (1-BP)—(pl3)(1—p?)

Ppg= .
_ _ P4 (1Y~ (ai3)(1- )
quality. The error bar calculated from averaging the local h leul ting f )
slope is much bigger than above statistical error. From aveH—:Or eachpp q We caicu atefyq, resulting from equation
aging up to the scaler=2.0~100y we obtain (12), and its error; see table Il and table IV. If the SL model
pléz: —8.36£0.14 anqogz: —7.36x0.26. The numbers for Werle efxact,@sshoultilcfnot (13erer|1d op L"’}qu' h ith th
the py;g from table 1Il are within the(now about ten times n figure 8 we offer a 3D plot 0B,y , together with the

. PG "YU
Iarger)’ error bars. These systematic errors are one order grrror bars resulting from thetargey systematicerrors ofp;
magnitude bigger than the purely statistical ones in table Il

(cf. table IV. From figure 8 the difference betwegh and 8"
We summarize the values pfq (and their error bajsde-

seems to be significant. This result is at variance with the
termined in this way in table IV. Note, however, that the '€Sult of Camussi and Bert2iwho obtained that the differ-
deviations betweem»',;’q and p;q and correspondingly also

ence of both3" and 8" to the SL valueg= (2/3)**~0.874
between the resulting’s (see below are still statistically is at most 1.2%-0.010.
significant.

Another feature of figure 8 is tha?',;’q shows a small
Within the SL model, the», &'s only depend ong, not trend towar'ds' smaller values for largprq which is not
on any other parameter, expected within the S_L Lmodel. If we aTlverage over @l
nevertheless, we obtaj-=0.947 and3' =0.870.
Knowing B, there is only the paramet&, left in eq.
(5). If we take the above mean valugd-=0.947 and

(12

1.0 [ ‘ B7=0.870, we obtain as best fits to ti§g data in figure 5,
/ C5=9.3 (the x2 of the fit is y?=10) andCl=3.7 (with
- / x°=1), excellently describing the numerical data. We do not
__ 05 e ascribe any physical meaning to the parameter values ob-
i // tained in our fit. Note that for oug- data this fit is superior
&6 M/ to the SL model with the original parameter values
0.0 T ///’ | ,8L=(2/T3)1’3, C1:/%=2. If we ) choose the2 SL value
> %? ,BT:B —(2/3)2_We obta|n2C0—1.97 WIEh x*=10° and
g Cy=3.9 with y*=0.8.(The x~ values forC; are larger than
those forC{ as the errors of thé¢;, are smaller than those of
%05 0.0 0.5 10 Op.) . .
g F._ (1) We now directly check .th.e hlerarchles.of the structure
9 Fous functions*?®23From eq.(7) it is easy to deriv¥?3
FIG. 9. The log—log plot of ,,.1(r) vs (Fp(r))glf(r) for variousp for the Fp+1(l’) = Bp(Fp(r))BE(r); (13

longitudinal and transversal structure functiogs=0.947,87=0.870. The .
lines are arbitrarily shifted in order for the slopes to be visible. The upper SVIth

lines are for the longitudinal structure functions=3 (uppey to p=7 D (r)

(lower), the lower 5 lines are for the transversal structure functiprs3 E +1:L (14)
(upped to p=7 (lower). p Dp(r)
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TABLE V. Slopes of Ig- . 1(r) vs I9((Fp (r))#E(r)), varyingr. According

to eq. (13), the slopes should be 1, which is pretty well fulfilled for 0.84
B-=0.947 andB8"=0.870. For comparision, we also give the slopes if the
SL value B8-=(2/3)'? is used for the longitudinal structure function. The 0.82
deviations of the slope to 1 are larger. The constBpti (13) show a slight
p-dependence. o 0.80 | .
3 + A
L T_ L_ 1/3 e 0.78 f ;
p Bsmgégf ! BY ﬁsmgleng Bl Bsm(s(ﬁ) BY Ry - / ’ E
> 076 | ° { 7
3 0.9984-0.0001 0.975 0.99880.0002 0.981 0.99880.0001 0.981 T 2
4 0.9995-0.0001 0.944 0.99980.0004 0.961 0.99360.0001 0.969 074 | * / g v/n
5 1.002G-0.0004 0.925 1.00060.0005 0.951 0.98950.0002 0.967 6 5 ) .
6  1.0050-0.0007 0.910 1.00200.0007 0.945 0.98540.0004 0.970 0.72 : :
7 1.0080G:-0.0010 0.899 1.00460.0016 0.940 0.98160.0007 0.977 -4 -2 0
gD
FIG. 10. Compensated ESS plot for the sixth order structure functions for
and the REWA calculation with 50 modes per level. The longitudinal and the
3 transversal structure functions show gemeslope 6¢,= —0.009. Squares
_ De(r) (1=A)/3(1-57] are forRe, = 1.4x 10°, longitudinal; crosses fdRe, = 1.4X 10°, transversal;
F(ry=| ——— (15) circles forRe = 8% 107, longitudinal; plusses fdRe, =8 1(, transversal.
(D3 (r)tte The two arrows indicate the scale 4or the simulation with the higher

. , . (left arrow) and the lowexright arrow) Reynolds number, respectively. The
With the meanpg’s obtained above, we ploE,,1(r) VS  inset shows the third order structure functibd(r) (for Re, = 1.4x 10°)

(Fp(r))ﬁT:'(r). If eq. (13) and equivalently eq(7) hold, the in order to give an idea to what scaléy the data in the figure correspond.
slope should be 1. Indeed, the slope is very close to 1, see
figure 9 and table V, which gives further support fr and
B" being different. The best agreement is found ger4 to
p=6; see table V. The reason is that the m@énbest agree
with B, 4 if p,q are around 4-6; see table Ill. For the other
p one could improve the fit by using the correspondihg, ;
however, note that the sixth order structure function alway
enters viaF(r), cf. eq.(15).

Moreover, we find @ dependence of the prefact®y, in
eq. (13). Therefore, determining from eq.(13) by plotting
IongH(r) vs logF,(r) for fixed r as a function ofp as
done in Refs. 9 and 33 does not seem to be possible here.

We do not know whether our results on REWA indicate
that the dlfferences between the scalingdgf vs D " and
DL vs D} L observed in the above full numerical S|mulat|ons
for smaII Re, are finiteRe, effects or whether they are arte-
Jacts of the REWA thinning of large wavevectdrs;"*'con-
nected to the suppression of small scale structures. Such
structures are associated with the different scaling of longi-
tudinal and transversal structure functions in Ref. 11. As
within REWA no Re, dependence of thé¢- and 6¢' is
observedsee figure 1) we favor the second interpretation.

We also tried GESS type scaling within REWA. No sta-
tistically significant deviations between tpg . and thep;
IV. SCALING RELATIONS WITHIN REWA were found.

Very large Re, in numerical turbulent flow can be
achieved in the reduced wave vector set apprOX|mat|on
(REWA) of the Navier—Stokes equatidn:2’>43* REWA To summarize, we offer strong evidence that the trans-
uses a reduced, geometrically scaling subset of wavevectoversal velocity fluctuations show stronger intermittency than
on which the Navier—Stokes equation is solved. Here wehe longitudinal ones. Our numerical values for the longitu-
choose a basic set of 50 modes per level. Very high Taylor-€inal and the transversal scaling exponeffgsand g for
Reynolds numbers up tBe, =7x10" (Refs. 27,3%can be forced stationary turbulence agree very well with those of
achieved, however, flow structures are underrepres&ntedBoratav and Pelz for decaying turbuleridesee table I. This
and the intermittency corrections are strongly underfinding is independent dRe, , at least for the relatively low
estimated’*° Re, we examined. For an anisotropic flow we essentially

We redid ESS types plots for REWA fd&ke, =8x 10  obtained the same scaling exponents. Only for the REWA
and for Rg =1.4x 10 for both the longitudinal and the calculations which underrepresent the small scale structures
transversal sixth order structure functions, see figure 10of the flow we donotfind a statistically significant deviation
There is no detectable difference between the Iongitudindbetween&g,ﬁ and 55;, however, the relative error is much
and transversal scaling exponents. The absolute valugigger than for the full simulations.
5§(§~ 5§g~ —0.009 is much smallefmodulo wisg than the We reiterate tha{2 gz because of relatiofd); a gen-
experimental or above numerical valﬁé'é~ —0.21, as ex- eralization of this equality to higher order momepts 2 is
tensively analyzed and discussed in the previous work omrong.

REWA 25-273435Note, however, that the relative error for ~ GESS is fulfilled with satisfactory precision for both lon-
the 6¢'s is much larger than in the full numerical gitudinal and transversal structure functions. The GESS scal-
simulations—we cannot exclude different degrees of intering exponents,op andp n.q are different. This result is the
mittency forD" and DT within REWA. more remarkable as those of the longitudinal velocity struc-

. SUMMARY, CONCLUSIONS, AND OUTLOOK
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