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Scaling exponents of the longitudinal and transversal velocity structure functions in numerical
Navier–Stokes turbulence simulations with Taylor–Reynolds numbers up toRel5110 are
determined by the extended self similarity method. We find significant differences in the degree of
intermittency: For the sixth moments the scaling corrections to the classical Kolmogorov
expectations aredj6

L520.2160.01 anddj6
T520.4360.01, respectively, independent ofRel .

Also the generalized extended self similarity exponentsrp,q5djp /djq differ significantly for the
longitudinal and transversal structure functions. Within the She–Leveque model this means that
longitudinal and transversal fluctuations obey different types of hierarchies of the moments.
Moreover, the She–Leveque model hierarchy parametersbL and bT show small but significant
dependences on the order of the moment. ©1997 American Institute of Physics.
@S1070-6631~97!03412-0#
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I. INTRODUCTION

One of the central issues in turbulence theory has alw
been whether the velocity structure functions deviate fr
Kolmogorov’s classical expectation.1,2 For many years the
community focused on thelongitudinal structure function,

Dp
L~r !5^@~u~x1r!2u~x!!•er

L#p&5^~vL~r !!p&, ~1!

whose inertial subrange~ISR! scaling exponents we define a
zp

L . ~Here,er
L is the unit vector in ther direction.! The reason

for this was that in many experiments Taylor’s frozen flo
hypothesis1–3 had to be employed and therefore, the tra
versal structure functions,

Dp
T~r !5^@~u~x1r!2u~x!!•er

T#p&5^~vT~r !!p&, ~2!

er
T being a unit vector perpendicular tor, could not be ob-

tained. We denote the scaling exponents ofDp
T(r ) aszp

T .
A priori, there is no reason to expectzp

L5zp
T for general

p. The probability density function~PDF! of the longitudinal
velocity differencevL(r ) is skewed because informatio
from x to x1r is conveyed by the velocity difference itsel
and odd moments ofvL(r ) thus do not vanish,Dp

LÞ0. In
particular, for homogeneous and isotropic turbulence
third order longitudinal structure function is connected to
second order one by the Howard–von Karman–Kolmogo
structure equation,1,2

D3
L~r !52

4

5
er 16n

d

dr
D2

L~r !. ~3!

Here, e is the mean energy dissipation rate andn is the
kinematic viscosity. The PDF of thetransversalvelocity dif-
ferencevT(r ), on the other hand, is symmetric and cons
quently all odd order moments vanish,Dp

T(r )50, p odd.
Only the second order longitudinal and transversal struc
functions are expected to scale the same way1,4,5 in the large
Reynolds number limit since for isotropic flow incompres
ibility implies1

D2
T~r !5D2

L~r !1
r

2

d

dr
D2

L~r !. ~4!
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Recently, multi-probe and optical techniques ma
the transversal structure functions experimenta
accessible.4,6–10 In addition, also recent numerical simula
tions of decaying turbulence11 have focused on the differenc
in scaling ofDp

L(r ) andDp
T(r ).

The results of all this work seem to be contradicto
While all authors agree that~i! both zp

L andzp
T show signifi-

cant deviations from the classical expectationp/3, and that
~ii ! zp

L is well fitted by the She–Leveque model~‘‘SL
model’’!,12 saying that

zp5
p

3
2C0S p

3
~12b3!2~12bp! D , ~5!

with C052 and b5(2/3)1/3, they disagree on whethe
zp

L5zp
T or zp

LÞzp
T .

van de Water’s group7,8 finds that in shear flow the
~moduli of the! transversal intermittency correction
dzp

T5zp
T2p/3 are significantly larger than the longitudin

onesdzp
L5zp

L2p/3, p.3. The same is found for jet flow
turbulence by Camussi and Benzi10 and for decaying~nu-
merical! turbulence by Boratav and Pelz.11 On the other
hand, the recent experiments by Camussiet al.9 and Kahal-
erraset al.13 did not give significant deviations betweendzp

L

anddzp
T and experiments by Noullezet al.4 founddzp

T com-
parable to thedzp

L found in other experiments. For a simp
quantification of the intermittency corrections it is comm
to give dz6. We do so in table I for the addressed expe
ments and simulations.

We would like to caution the reader of a too simplist
interpretation of table I. The detailed definitions of thedzp

L,T

slightly differ from experiment to experiment. In all low
Reynolds number experiments4,9–11 the scaling exponents
could only be determined by employing the extended s
similarity ~ESS! method introduced by Benziet al.14 In this
method the structure functionsDp(r ) are plotted agains
D3* (r ), where D3* (r ) is the third order structure function
defined with themodulusof the velocity difference and is
experimentally found to scale with roughly the same exp
38177/9/$10.00 © 1997 American Institute of Physics
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TABLE I. Intermittency correctionsdj6
L and dj6

T ~see the text for the definition! for the longitudinal and
transversal sixth order structure functions for various numerical and experimental flows.

Reference Flow Rel 2dj6
L 2dj6

T Remark

van de Wateret al.8 Shear flow up to 600 0.18– 0.20 0.27– 0.31 Normalize
Camussi and Benzi10 Jet flow 250 0.25 0.38 ESS

Camussiet al.9 Wind tunnel flow 37 0.1960.03 0.2260.03 ESS
Boratav and Pelz11 Decaying numerical flow ;100 0.23 0.43 ESS

Noullez et al.4 Jet flow up to 600 2 0.2560.10 ESS
This work Forced numerical flow 110 0.2160.01 0.4360.01 ESS
This work Forced numerical flow 70 0.2260.01 0.4360.01 ESS
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nu-
nent asD3(r ), which includes the sign ofv(r ).15 The ISR
scaling exponent of such a plot is henceforth denoted
jp5zp /z3* . As in the ISRz3

L51 according to the structur
equation~3!, one expectsjp

L5zp
L , if z3*

L5z3
L . In experi-

ments, however, there are always small deviations fr
z3*

L51; therefore, in principlezp
L andjp

L could slightly dif-
fer; see also Ref. 16. For the transversal structure func
D3*

T(r ) there is no known relation as equation~3!. Indeed,
van de Water’s group findsz3*

T51.088 and they givenor-
malizedscaling exponentszp /z3 which we also calljp . To
date, there is no strict theoretical argument why ESS wo
so well. Note that for the present numerical simulation
doesnot work for odd order structure functions, takenwith-
out the modulus.16

What is the origin of the differences between the resu
reported in table I? One may think that it is the differe
geometry of the flows which causes the differences, in p
ticular, a different strength of the local shear and of the
isotropy in the flow. Indeed, the shear in the flow of Ref. 8
considerable and it is known that shear destroys ESS.17,18On
the other hand, at leastdj6

L was found to be remarkabl
independent of different flow geometries.19 Also, the numeri-
cal flow of Ref. 11 which clearly showsdj6

LÞdj6
T is highly

isotropic. But it is decaying which in Ref. 20 is speculated
be a possible origin of the observed11 discrepancy between
longitudinal and transversal intermittency corrections.

In this paper we set out to determine the scaling ex
nents of the longitudinal and transversal structure functi
for forced, statistically stationary numerical Navier–Stok
turbulence up toRel5110. Our motivation is to contribute
to clarifying the contradictionary picture reflected in table
It is of general interest for the understanding of intermitten
whether in Navier–Stokes dynamics not only the veloc
field and derivatives thereof are independently scaling fie
as analyzed in Ref. 21, but that there are already two in
pendently scaling velocity fieldsvL(r ) and vT(r ). Indeed,
we will find significant differences for the longitudinal an
transversal scaling corrections, namely, to put the result
nutshell, dj6

L50.2160.01 and dj6
T50.4360.01 in very

good agreement with Boratav’s result for decayi
turbulence.11

The question which immediately comes up is wheth
this finding originates in the anisotropy of the flow. Ther
fore, we carefully analyze the degree of anisotropy of
numerical flow. We find only limited anisotropy and only o
the very large scale and therefore consider the different s
ids, Vol. 9, No. 12, December 1997
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more remarkable.

The second point we examine is whether these differ
intermittency correctionsdjp

L anddjp
T correspond to differ-

ent hierarchiesof the moments. Such hierarchies were su
gested by She and Leveque12 for the r -averaged energy dis
sipation ratee r , namely

^e r
p11&

^e r
p&

5Bp8S ^e r
p&

^e r
p21&

D b3

~e r
~`!!12b3

, ~6!

Bp8 constant,e r
(`)5 limp→`(^e r

p11&/^e r
p&); the SL parameter

b is therefore called the hierarchy parameter. Such a hie
chy means that the corresponding probability distribut
function obeys a log-Poisson statistics.22

Ruiz Chavarriaet al.23 extended the idea of hierarchie
to structure functions. Assuming Kolmogorov’s refined sim
larity hypothesisDp(r );^e r

p/3&r p/3 ~Refs. 2,24! the structure
function hierarchy can be derived from the SL hierarc
~6!23,18 and reads as

Dp11~r !

Dp~r !
5Bp9S Dp~r !

Dp21~r ! D
b

~D ~`!!
12b, ~7!

Bp9 constant,D (`)(r )5 limp→`(Dp11(r )/Dp(r ))5(r e r
(`))1/3.

We will calculate the hierarchy parameterb both for the
longitudinal and transversal structure functions, very ca
fully considering the systematic and statistical errors. Fi
we find significant deviations betweenbL and bT. Second,
we find a slight but also significant dependence of the h
archy parametersbL and bT on the order of the momen
which is not expected within the SL model.

The paper is organized as follows: In section II, we d
fine the numerical flow and carefully check its isotropy,
section III we report on various scaling relations, employi
ESS and the generalized ESS~GESS15,18!; we also calculate
the hierarchy parametersbL andbT. In section IV we deter-
minedjp

L anddjp
T within a reduced wave vector set approx

mation of the Navier–Stokes dynamics25–27 in which very
largeRel can be achieved. Conclusions are drawn in sect
V.

II. SET UP OF THE FLOW AND CHECK OF ITS
ISOTROPY

The 3D incompressible Navier–Stokes equations are
merically solved on aN3 grid with periodic boundary condi-
Grossmann, Lohse, and Reeh
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tions. Spherical truncation is used to reduce aliasing. For
isotropic flow simulation~denoted by ‘‘I’’! we force the sys-
tem on the largest scale@wavevectors k5(0,0,61)/L,
k5(0,61,61)/L, k5(61,61,61)/L, and permutations
thereof# with a forcing term as, e.g., described in Ref. 2
Units are fixed by picking the length scaleL51 and the
average energy input rate~5 the energy dissipation rate!
e51. The Taylor–Reynolds number is defined
Rel5u1,rmsl/n, where l5u1,rms /(]1u1) rms is the Taylor
length andn the viscosity. Most of our results refer toN596
and n50.006, corresponding to a resolution of sca
r>2pL/N'3h and Rel5110. Time integrations of abou
140 large eddy turnover times are performed. Averages
taken over space and time. To check the Reynolds num
dependence we also did an isotropicN560, n50.009 simu-
lation ~240 large eddy turnovers! which hasRel570. For a
less isotropic flow simulation~denoted by ‘‘A’’! we only
force one modek5(0,0,1)/L. This simulation is done for
N560, n50.009, for about 210 large eddy turnovers; it h
Rel570, too.

We checked the isotropy of the flow in several way
• We calculated the structure functions for different spa
directions and compared them among each other. For
simulation ‘‘I’’ good agreement is found, for ‘‘A’’ one space
direction is distinguished as expected from the type of fo
ing, see figure 1. Moreover, for the isotropic simulation w
find less than 5% deviations between^u1

2&, ^u2
2&, and ^u3

2&.
Note thatD2

L(r 5p) and D2
T(r 5p) ~we usedr 5p as the

TABLE II. Energy input and dissipation rates for the three numerical sim
lations. The good agreement between the energy input and the total e
dissipation ratee means statistical stationarity. The degree of agreem
between the last two columns with 1 characterizes the degree of isotro
the VSR.

Energy input e 15n^(]1u1)2& (15/2)n^(]2u1)2&

I, N596 1 1.003 0.984 1.021
I, N560 1 1.003 0.984 0.994
A, N560 1 1.004 0.931 0.851

FIG. 1. Second ordertransversalstructure functionsD2
T(r ) for the isotropic

N596, n50.006 simulation (Rel5110, upper!, the isotropic N560,
n50.009 simulation (Rel570, middle!, and the anisotropicN560,
n50.009 simulation (Rel570, bottom!. The solid lines are calculated from
the definition~2! of D2

T(r ) ~for the two directions being perpendicular tor);
the dashed line is calculated from relation~4! which holds for perfect isot-
ropy and homogeneity. For the anisotropic case anisotropy can be se
all scales; also the ISR slope deviates from the expected valuez250.70.
Phys. Fluids, Vol. 9, No. 12, December 1997
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largest possible space separation in numerical flow with
riodic boundary conditions! do not equal 2̂ ui

2& ( i 51,2, or
3) as expected for experimental, isotropic flow atr 5`. We
find deviations up to 25% which means that the velocit
are still correlated at the space distance ofr 5p. For the
longitudinal velocities we find a positive correlation of abo
25%, for the transversal velocities we find a negative cor
lation of about 15%. Geometrically, this means that there
a large scale eddy with diameter;p. We can not fully ex-
clude that the results on scaling exponents we will report
are influenced by the flow geometry~periodic boundary con-
ditions!. They might be different for different geometrie
~e.g., those in experimental flows!.
• We checked relation~4! which only holds for isotropy.1 For
‘‘I’’ there are only large scale deviations, for ‘‘A’’ deviations
show up down to small scales; see figure 1.
• We checked the relation~3!, see figure 2. It holds for iso
tropic flow. The agreement is reasonable. However, th
still is no developed inertial subrange due to the lowRel .
The curve looks very similar to the experimental curve
comparableRel ; cf. Fig. 2 of Ref. 8. In particular, also the
experimental curves bend down for larger . The reason for
this of course is that at large scales the fluctuations
Gaussian and odd order moments vanish. We ascribe
deviations in the viscous subrange~VSR! to the lack of per-
fect convergence of odd moments. This difference remai
even for as long averaging times as 140 large eddy turnov
Also the relationD3

T(r )50 is not yet fulfilled for this low
Rel , though the modulus ofD3

T(r ) is more than one decad
smaller than the modulus ofD3

L(r ) for all scales, see figure
2.
• For perfect isotropy, the mean energy dissipation ratee can
be calculated fromany component of the strain tensor] iuj ,
e.g.,

e515n^~]1u1!2&5 15
2 n^~]2u1!2&. ~8!

For the isotropic flow, these relations hold very well s
table II for the anisotropic one there are deviations up
15%.
• For an isotropic flow, the isotropy coefficient,28

-
rgy
t
in

on

FIG. 2. Third order structure functionD3
L(r ), directly calculated from the

numerics ~long dashed! and from Kolmogorov’s structure equation~3!
~solid!. Also shown areD3*

L(r ) ~dashed–dotted! and uD3
T(r )u ~short

dashed!. The data are for the isotropicN596 simulation (Rel5110).
3819Grossmann, Lohse, and Reeh
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I ~k1!5
E11~k1!2k1]E11~k1!/]k1

2E22~k1!
, ~9!

which compares the longitudinal and transversal ene
spectraE11(k1) and E22(k1) should become 1.29 I (k1) is
shown in figure 3. Indeed, in generalI (k1) is closer to 1 for
‘‘I’’ than it is for ‘‘A.’’ We do not quite understand the
bump aroundk152.5 in I (k1) in the isotropic simulation.
We tend to ascribe it to the forcing of the mod
(61,61,61)/L. The wiggles for very largek1 are numeri-
cal artifacts because of the derivative in eq.~9!.

III. SCALING EXPONENTS FOR LONGITUDINAL AND
TRANSVERSAL STRUCTURE FUNCTIONS

To determine the degree of intermittency in the longi
dinal and transversal structure functions we employ a typ
ESS14,30,18by calculating generalized structure functions,

Gp~r !5
Dp~r !

~D3* ~r !!p/3
~10!

and plotting them vsD3* ~‘‘compensated ESS plot;’’9,31!; see
figure 4. The intermittency exponentsdj6 ~the ISR slopes in
figure 4! for the longitudinal and transversal structure fun
tions are clearly different; the transversal signal shows c
siderably more intermittency. No dependence onRel is
found. The values ofdj6

L,T for the isotropicRel5110 and
Rel570 simulations are given in table I. Surprisingly, al
the anisotropic simulation ‘‘A’’ approximately has the sam
scaling exponents, namely dj6

L520.2360.01 and
dj6

T520.4060.01; see figure 4. Therefore, in what follow
we will only focus on the isotropic simulation ‘‘I.’’ Our re-
sults for variousdjp determined as in figure 4 are summ
rized in figure 5.

It can be seen that the intermittency correctionsdjp
L and

djp
T clearly deviate throughout, i.e., transversal velocity flu

tuation are much more intermittent than longitudinal on
Though it has been known for many years that the trans
sal velocitygradient]2u1 is more intermittent than the lon
gitudinal one]1u1, see, e.g., Ref. 32—in our simulations w
have flatnesses ofF]1u1

54.9, F]2u1
57.0, F]1u22]2u1

57.0—it is not trivial that this difference, probing the VSR

FIG. 3. Isotropy coefficientI (k1), eq. ~9!, for the simulations ‘‘I’’ ~solid!
and ‘‘A’’ ~dashed! (N560).
3820 Phys. Fluids, Vol. 9, No. 12, December 1997
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is carried on into the ISR. In Ref. 11 the different degrees
intermittency were associated with different types of stru
tures: Longitudinal fluctuations with strain like structure
transversal fluctuations with vorticity like structures—whic
both is in keeping with the definitions of strain and vorticity
respectively.

Let us discuss our results ondjp
L,T in figure 5 in more

detail. The values fordjp
L are well described by the SL

model fit eq. ~5! with the SL values C052,
b5(2/3)1/3'0.874 as found for many other isotropic, eve
low Rel number, experimental or numerical flows.2,14,15For
the physical interpretation of the parameters in the SL mod
we refer to Refs. 12 and 22. From a phenomenological po
of view, one could consider eq.~5! simply as a two param-
eter fit of thejp’s. The two SL parameters for thetransversal
scaling exponents can be viewed as a simple way to quan
the degree of intermittency.

We now suggest a method to replace this one tw
parameter-fit by two one-parameter fits. To do so, we emp
generalized extended self similarity~GESS15,18! and plotGp

FIG. 4. Compensated ESS type plots forD6
L/(D3*

L)2 vs D3*
L ~circles! and

D6
T/(D3*

T)2 vs D3*
T ~stars!. The ISR slopes are, respectively,dj6

L anddj6
T .

The upper part of the figure refers to the isotropic simulation withN596,
the lower one to the anisotropic one withN560.
Grossmann, Lohse, and Reeh
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vs Gq , see figure 6. The sloperp,q of such a plot is by
definition ~10!,

rp,q5
jp2p/3

jq2q/3
. ~11!

For fixedp, q, rp,q
L , andrp,q

T aresignificantly different, see
table III. We checked this result very carefully. The sm
error bars inrp,q result from linear regressions in GES
plots as in figure 6 and in addition from an averaging o
the different space directions. We also checked this
smallerRel570; the deviations in comparison to the resu
given in table III are never larger than 0.5%. Moreover,

FIG. 5. Intermittency correctionsdjp
L ~circles for N596, squaresN560)

and djp
T ~crossesN596, trianglesN560) from the isotropic numerica

simulations. The dashed lines are 1-parameter fits within the SL m
where theb ’s have been taken fixed from the averaged fits of the GESS
plot, i.e.,bL50.947 andbT50.870. The one free fit parameter is thusC0.
We obtain the shown remarkably good fits withC0

L59.3 for the longitudinal
data~short dashed! andC0

T53.7 for the transversal data~long dashed!. The
standard SL fit12 b5(2/3)1/3, C052 fits the longitudinal corrections also
pretty well, see the solid line.

FIG. 6. GESS type plotG(6)(r ) vs G(2)(r ) for both the longitudinal~solid!
and the transversal~dashed! G-structure functions for the isotropic simula
tions. The slopes of these curves arer6,2

L 528.4960.02 and
r6,2

T 527.5260.04, respectively. The errors result from a linear regress
of every single curve, from weighted averaging of the results for differ
space directions, and differentRel . The hardly distinguishable lines within
the two bunches of curves are the results for different directions and di
ent Reynolds numbersRel5110 andRel570. The good agreement within
the bunches means good isotropy and independence of the scaling expo
from Rel . Note that in this type of plot the far VSR collapses into the upp
left point of these curves. The filled bullets refer tor 510h for Rel5110
~left one! andRel570 ~right one!. The open bullet refers to the outer leng
scaler 5L.
Phys. Fluids, Vol. 9, No. 12, December 1997
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r
r

make sure that our numbers are well converged, we a
averaged over only 30, 60, and 90 large eddy turnov
rather than 140; still, the result is the same; the deviations
smaller than the error bars.

To quantify the quality to which GESS holds w
checked the relationrp,s5rp,qrq,s , implied by GESS, for
variousp,q. Table III allows the reader to do so. Neither fo
the rp,q

L nor for therp,q
T did we find a single example wher

there were deviations larger than the error bars. For exam
r2,4

L
•r4,6

L 50.117760.0005 which equalsr2,6
L within the error

bars.
The error bars up to now stem fromstatistics. One

would like to be able to judge the size of thesystematic
errors. Therefore, in figure 7 we display thelocal slopeof the
curves in figure 6. Both the longitudinal and the transver
local slope slightly increase~modulus-wise! with increasing
scale~i.e., from left to right!, which shows the limitations of
the above statement that GESS is fulfilled with remarka

el
e

n
t

r-

ents
r

TABLE III. rp,q
L,T for various pairsp,q from GESS type plots as in figure 6

By definition,rp,q5rq,p
21 . The errors are purely statistical ones. In the thi

and fifth column, we give theb ’s resulting from eq.~12!. Note that GESS
implies rp,s5rp,qrq,s . This relation can be used to check the quality
GESS.

p,q rp,q
L bL rp,q

T bT

2,4 20.509360.0004 0.97360.001 20.544060.0011 0.87760.003
2,5 20.207360.0002 0.96460.001 20.227260.0006 0.87560.002
2,6 20.117660.0002 0.95760.001 20.131860.0004 0.87360.002
2,7 20.077460.0001 0.95260.001 20.088460.0003 0.87260.002
2,8 20.055560.0001 0.94760.001 20.064560.0003 0.87160.003
4,5 0.407260.0001 0.94760.001 0.417760.0003 0.87060.002
4,6 0.231160.0001 0.94160.001 0.242360.0004 0.86960.003
4,7 0.152160.0002 0.93760.001 0.162560.0005 0.86860.003
4,8 0.109260.0003 0.93360.002 0.118660.0005 0.86760.003
5,6 0.567560.0002 0.93560.001 0.580060.0005 0.86760.003
5,7 0.373660.0004 0.93160.002 0.389060.0008 0.86760.003
5,8 0.268260.0006 0.92860.002 0.284060.0010 0.86660.004
6,7 0.658360.0005 0.92760.002 0.670860.0008 0.86560.004
6,8 0.472560.0008 0.92460.003 0.490160.0014 0.86360.005
7,8 0.717760.0007 0.92260.003 0.730860.0010 0.86060.005

FIG. 7. Local slopes of figure 6 for theRel5110 simulation. The two
dashed lines are for the two different space directions for the transve
structure functions, the three solid lines are for the three space directio
the longitudinal structure functions. If we calculate the average~for scales
up to r 52.0'100h) we obtainr6,2

L 528.3660.14 andr6,2
T 527.3660.26.

The arrows refer to 10h andL, respectively.
3821Grossmann, Lohse, and Reeh
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quality. The error bar calculated from averaging the loc
slope is much bigger than above statistical error. From av
aging up to the scale r 52.0'100h we obtain
r6,2

L 528.3660.14 andr6,2
T 527.3660.26. The numbers for

the rp,q
L,T from table III are within the~now about ten times

larger! error bars. These systematic errors are one order
magnitude bigger than the purely statistical ones in table I
We summarize the values ofrp,q

L,T ~and their error bars! de-
termined in this way in table IV. Note, however, that th
deviations betweenrp,q

L and rp,q
T and correspondingly also

between the resultingb ’s ~see below! are still statistically
significant.

Within the SL model, therp,q’s only depend onb, not
on any other parameter,

FIG. 8. The longitudinal and transversal hierarchy parametersbp,q
L ~upper!

andbp,q
T ~lower!, respectively. The data are taken from table III, i.e., for th

‘‘I’’ simulation with Rel5110, the averaging time is 140 large eddy turn
overs. To get an idea of the size of the error, two error bars are draw
representing the much largersystematicerrors rather than the statistical
ones. First, we observe thatbL andbT are clearly different. Second, a slight
dependence ofbL,T on p,q is seen.

FIG. 9. The log–log plot ofFp11(r ) vs (Fp(r ))bF̃(r ) for variousp for the
longitudinal and transversal structure functions,bL50.947,bT50.870. The
lines are arbitrarily shifted in order for the slopes to be visible. The uppe
lines are for the longitudinal structure functions,p53 ~upper! to p57
~lower!, the lower 5 lines are for the transversal structure functions,p53
~upper! to p57 ~lower!.
3822 Phys. Fluids, Vol. 9, No. 12, December 1997
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rp,q
SL 5

~12bp!2~p/3!~12b3!

~12bq!2~q/3!~12b3!
. ~12!

For eachrp,q we calculatebp,q , resulting from equation
~12!, and its error; see table III and table IV. If the SL mod
were exact,b should not depend onp andq.

In figure 8 we offer a 3D plot ofbp,q
L,T , together with the

error bars resulting from the~larger! systematicerrors ofr;
cf. table IV. From figure 8 the difference betweenbL andbT

seems to be significant. This result is at variance with
result of Camussi and Benzi10 who obtained that the differ-
ence of bothbL andbT to the SL valueb5(2/3)1/3'0.874
is at most 1.2%50.010.

Another feature of figure 8 is thatbp,q
L shows a small

trend towards smaller values for largerp,q which is not
expected within the SL model. If we average over allbp,q

nevertheless, we obtainbL50.947 andbT50.870.
Knowing b, there is only the parameterC0 left in eq.

~5!. If we take the above mean valuesbL50.947 and
bT50.870, we obtain as best fits to thejp data in figure 5,
C0

L59.3 ~the x2 of the fit is x2510) and C0
T53.7 ~with

x251), excellently describing the numerical data. We do n
ascribe any physical meaning to the parameter values
tained in our fit. Note that for ourjL data this fit is superior
to the SL model with the original parameter valu
b5(2/3)1/3, C052. If we choose the SL value
bL5bT5(2/3)1/3 we obtain C0

L51.97 with x25103 and
C0

T53.9 with x250.8. ~Thex2 values forC0
L are larger than

those forC0
T as the errors of thedjp

L are smaller than those o
djp

T .!
We now directly check the hierarchies of the structu

functions.12,18,23From eq.~7! it is easy to derive18,23

Fp11~r !5Bp~Fp~r !!bF̃~r !, ~13!

with

Fp115
Dp11~r !

Dp~r !
~14!

n,

5

TABLE IV. rp,q
L,T for various pairsp,q determined from the local slope o

the GESS type plots, cf. figure 7. The errors are the systematic ones, s
ming from the local slope not being constant. In the third and fifth colum
we again give theb ’s and their errors resulting from eq.~12!. Averaging the
b ’s determined this way givesbL50.930 andbT50.855.

p,q rp,q
L bL rp,q

T bT

2,4 20.51460.005 0.95860.016 20.55660.012 0.84660.031
2,5 20.21060.003 0.95060.014 20.23460.007 0.84860.027
2,6 20.12060.002 0.94460.012 20.13660.005 0.84960.025
2,7 20.07960.002 0.94060.012 20.09260.003 0.85160.023
2,8 20.05760.001 0.93660.011 20.06760.003 0.85260.021
4,5 0.40960.001 0.93660.011 0.42060.003 0.85160.021
4,6 0.23360.002 0.93160.010 0.24560.003 0.85360.020
4,7 0.15360.002 0.92760.010 0.16560.003 0.85560.018
4,8 0.11060.001 0.92460.011 0.12060.003 0.85660.018
5,6 0.56960.002 0.92660.010 0.58260.003 0.85560.018
5,7 0.37660.002 0.92360.010 0.39160.004 0.85760.018
5,8 0.27060.003 0.92060.011 0.28660.004 0.85860.018
6,7 0.66060.002 0.91960.011 0.67260.003 0.85860.018
6,8 0.47560.004 0.91760.012 0.49160.005 0.85960.018
7,8 0.71960.003 0.91460.014 0.73160.004 0.86060.019
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F̃~r !5S D6~r !

~D3* ~r !!11b3D ~12b!/[3~12b3!]

. ~15!

With the meanb ’s obtained above, we plotFp11(r ) vs
(Fp(r ))bF̃(r ). If eq. ~13! and equivalently eq.~7! hold, the
slope should be 1. Indeed, the slope is very close to 1,
figure 9 and table V, which gives further support forbL and
bT being different. The best agreement is found forp54 to
p56; see table V. The reason is that the meanb ’s best agree
with bp,q if p,q are around 4–6; see table III. For the oth
p one could improve the fit by using the correspondingbp,q ;
however, note that the sixth order structure function alw
enters viaF̃(r ), cf. eq.~15!.

Moreover, we find ap dependence of the prefactorBp in
eq. ~13!. Therefore, determiningb from eq.~13! by plotting
logFp11(r ) vs logFp(r ) for fixed r as a function ofp as
done in Refs. 9 and 33 does not seem to be possible he

IV. SCALING RELATIONS WITHIN REWA

Very large Rel in numerical turbulent flow can be
achieved in the reduced wave vector set approxima
~REWA! of the Navier–Stokes equation.25–27,34,35 REWA
uses a reduced, geometrically scaling subset of wavevec
on which the Navier–Stokes equation is solved. Here
choose a basic set of 50 modes per level. Very high Tayl
Reynolds numbers up toRel573104 ~Refs. 27,34! can be
achieved, however, flow structures are underrepresent31

and the intermittency corrections are strongly und
estimated.27,35

We redid ESS types plots for REWA forRel583102

and for Rel51.43105 for both the longitudinal and the
transversal sixth order structure functions, see figure
There is no detectable difference between the longitud
and transversal scaling exponents. The absolute v
dj6

L;dj6
T;20.009 is much smaller~modulo wise! than the

experimental or above numerical valuedj6
L;20.21, as ex-

tensively analyzed and discussed in the previous work
REWA.25–27,34,35Note, however, that the relative error fo
the dj ’s is much larger than in the full numerica
simulations—we cannot exclude different degrees of in
mittency forDp

L andDp
T within REWA.

TABLE V. Slopes of lgFp11(r ) vs lg((Fp(r ))bF̃(r )), varyingr . According
to eq. ~13!, the slopes should be 1, which is pretty well fulfilled fo
bL50.947 andbT50.870. For comparision, we also give the slopes if t
SL valuebL5(2/3)1/3 is used for the longitudinal structure function. Th
deviations of the slope to 1 are larger. The constantsBp in ~13! show a slight
p-dependence.

p
bL50.947
SlopeL Bp

L
bT50.870
SlopeT Bp

T
bL5(2/3)1/3

SlopeL Bp
L

3 0.998460.0001 0.975 0.998860.0002 0.981 0.998860.0001 0.981
4 0.999560.0001 0.944 0.999360.0004 0.961 0.993660.0001 0.969
5 1.002060.0004 0.925 1.000060.0005 0.951 0.989560.0002 0.967
6 1.005060.0007 0.910 1.002060.0007 0.945 0.985460.0004 0.970
7 1.008060.0010 0.899 1.004060.0016 0.940 0.981060.0007 0.977
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We do not know whether our results on REWA indica
that the differences between the scaling ofDp

T vs D3*
T and

Dp
L vs D3*

L observed in the above full numerical simulatio
for smallRel are finiteRel effects or whether they are arte
facts of the REWA thinning of large wavevectors,25,27,31con-
nected to the suppression of small scale structures. S
structures are associated with the different scaling of lon
tudinal and transversal structure functions in Ref. 11.
within REWA no Rel dependence of thedjL and djT is
observed~see figure 10!; we favor the second interpretation

We also tried GESS type scaling within REWA. No st
tistically significant deviations between therp,q

L and therp,q
T

were found.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

To summarize, we offer strong evidence that the tra
versal velocity fluctuations show stronger intermittency th
the longitudinal ones. Our numerical values for the longi
dinal and the transversal scaling exponentsjp

L and jp
T for

forced stationary turbulence agree very well with those
Boratav and Pelz for decaying turbulence;11 see table I. This
finding is independent ofRel , at least for the relatively low
Rel we examined. For an anisotropic flow we essentia
obtained the same scaling exponents. Only for the REW
calculations which underrepresent the small scale struct
of the flow we donot find a statistically significant deviation
betweendjp

L and djp
T , however, the relative error is muc

bigger than for the full simulations.
We reiterate thatz2

L5z2
T because of relation~4!; a gen-

eralization of this equality to higher order momentsp.2 is
wrong.

GESS is fulfilled with satisfactory precision for both lon
gitudinal and transversal structure functions. The GESS s
ing exponentsrp,q

L and rp,q
T are different. This result is the

more remarkable, as those of the longitudinal velocity str

FIG. 10. Compensated ESS plot for the sixth order structure functions
the REWA calculation with 50 modes per level. The longitudinal and
transversal structure functions show thesameslopedjp520.009. Squares
are forRel51.43105, longitudinal; crosses forRel51.43105, transversal;
circles forRel583102, longitudinal; plusses forRel583102, transversal.
The two arrows indicate the scale 10h for the simulation with the higher
~left arrow! and the lower~right arrow! Reynolds number, respectively. Th
inset shows the third order structure functionD3*

L(r ) ~for Rel51.43105)
in order to give an idea to what scaler /h the data in the figure correspond
3823Grossmann, Lohse, and Reeh
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ture function agree with those of an active36 or passive
scalar18 or even with those calculated for the magnetic fie
in MHD;37 see table 1 of Ref. 18.

The She–Leveque hierarchy parametersbL,T following
from therL,T exponents consequently also differ. Both sho
a weak dependence onp,q which is not expected within the
She–Leveque model.

In the whole analysis we took great care of systema
and statistical errors to get significant statements.

To conclude, there seem to exist independently sca
velocity fieldsvL(r ) andvT(r ), i.e., the Navier–Stokes dy
namics seems to make use of this degree of freedom b
allowed by symmetry. It is very likely that the two differen
scaling velocities fields will also be reflected in the flo
geometry.

A more complete discription of the statistics of the v
locity field was recently suggested by L’vov, Podivilov, an
Procaccia.38 These authors point out that because of ro
tional symmetry only the SO~3! irreducible amplitudes of the
velocity structure tensors should obey clean scaling. In R
39 we analyze the scaling properties of these amplitudes
merically and show~for fourth order moments! how they are
connected to the longitudinal and transversal structure fu
tions.

Presently, neither the longitudinal nor the transver
scaling exponents, nor the scaling exponents of the irred
ible SO~3! invariants of the velocity correlations38 can be
calculated analytically from the Navier–Stokes dynami
Many phenomenological models based on various views
how intermittency develops are able to fit thelongitudinal
intermittency corrections. It should be possible to derive a
the transversalintermittency corrections in the framework o
the thinking these models are based on in order to check
consistency. The ultimate goal, however, must be to de
both longitudinal and transversal scaling exponents from
Navier–Stokes equation.
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HLRZ Jülich supplied us with computer time. D. L. ac
knowledges the hospitality of Leo Kadanoff and the Univ
sity of Chicago, where part of the work was done, and s
port by MRSEC.

1A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics~The MIT
Press, Cambridge, MA, 1975!.

2U. Frisch,Turbulence~Cambridge University Press, Cambridge, 1995!.
3G I. Taylor, ‘‘The spectrum of turbulence,’’ Proc. R. Soc. London, Ser.
164, 476 ~1938!.

4A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, ‘‘Tran
verse velocity increments in turbulent flow using the RELIEF techniqu
J. Fluid Mech.339, 287 ~1997!.

5The relations betweenD4
T(r ) and D4

L(r ) given in M. Ould-Rouis, R. A.
Antonia, Y. Zhu, and F. Anselmet, ‘‘Turbulent pressure structure fu
tion,’’ Phys. Rev. Lett.77, 2222 ~1996!, are restricted to the approxima
tion of classical scaling exponents.

6S. G. Saddoughi and S. V. Veeravalli, ‘‘Local isotropy in turbulent boun
3824 Phys. Fluids, Vol. 9, No. 12, December 1997

Downloaded 18 Apr 2005 to 130.89.112.66. Redistribution subject to AIP
c

g

ng

-

f.
u-

c-

l
c-

.
n

o

eir
e
e

-

n-

-
-

’

-

-

ary layers at high Reynolds numbers,’’ J. Fluid Mech.268, 333 ~1994!.
7J. Herweijter and W. van de Water, ‘‘Transverse structure functions
turbulence,’’ in Advance in Turbulence V, edited by R. Benzi~Kluwer
Academic, New York, 1995!, p. 210.

8W. van de Water and J. Herweijter, ‘‘High order structure functions
turbulence,’’ preprint, Eindhoven, 1996.

9R. Camussi, D. Barbagallo, G. Guj, and F. Stella, ‘‘Transverse and lo
tudinal scaling laws in non-homogeneous low Re turbulence,’’ Phys. F
ids 8, 1181~1996!.

10R. Camussi and R. Benzi, ‘‘Hierarchy of transverse structure function
Phys. Fluids9, 257 ~1997!.

11O. N. Boratav and R. B. Pelz, ‘‘Structures and structure functions in
inertial range of turbulence,’’ Phys. Fluids9, 1400~1997!.

12Z. S. She and E. Leveque, ‘‘Universal scaling laws in fully develop
turbulence,’’ Phys. Rev. Lett.72, 336 ~1994!.

13H. Kahalerras, Y. Malecot, and Y. Gagne, ‘‘Transverse velocity struct
functions in developed turbulence,’’ inAdvance in Turbulence VI, edited
by S. Gavrilakis, L. Michiels, and P. A. Monkewitz~Kluwer Academic,
New York, 1996!, p. 235.

14R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and
Succi, ‘‘Extended self-similarity in turbulent flows,’’ Phys. Rev. E48,
R29 ~1993!.

15R. Benzi, L. Biferale, S. Ciliberto, M. V. Struglia, and R. Tripiccione
‘‘On the intermittent energy transfer at viscous scales in turbulent flow
Europhys. Lett.32, 709 ~1995!.

16S. Grossmann, D. Lohse, and A. Reeh, ‘‘Application of extended s
similarity in turbulence,’’ Phys. Rev. E56, 5474~1997!.

17S. Stolovitzky and K. R. Sreenivasan, ‘‘Scaling of structure functions
Phys. Rev. E48, R33 ~1993!.

18R. Benzi, L. Biferale, S. Ciliberto, M. V. Struglia, and R. Tripiccione
‘‘Generalized scaling in fully developed turbulence,’’ Physica D96, 162
~1996!.

19A. Arneodo et al., ‘‘Structure functions in turbulence, in various flow
configurations, at Reynolds number between 30 and 5000, using exte
self-similarity,’’ Europhys. Lett.34, 411 ~1996!.

20O. N. Boratav, ‘‘On recent intermittency models of turbulence,’’ Phy
Fluids 9, 1206~1997!.

21V. L’vov and I. Procaccia, ‘‘Hydrodynamic turbulence: A 19th centu
problem with a challenge for the 21st century,’’ Phys. World 9, 35~1996!
and references to the original contributions of these authors therein.

22B. Dubrulle, ‘‘Intermittency in fully developed turbulence: Log-Poisso
statistics and generalized scale covariance,’’ Phys. Rev. Lett.73, 959
~1994!; Z. S. She and E. S. Waymire, ‘‘‘‘Quantized energy cascade a
log-Poisson statistics in fully developed turbulence,’’ibid. 74, 262~1995!.

23G. Ruiz Chavarria, C. Baudet, R. Benzi, and S. Ciliberto, ‘‘Hierarchy
the velocity structure functions in fully developed turbulence,’’ J. Phys
5, 485 ~1995!.

24A. N. Kolmogorov, ‘‘A refinement of previous hypotheses concerning t
local structure of turbulence in a viscous incompressible fluid at h
Reynolds number,’’ J. Fluid Mech.13, 82 ~1962!; G. Stolovitzky, P.
Kailasnath, and K. R. Sreenivasan, ‘‘Kolmogorov’s refined similarity h
potheses,’’ Phys. Rev. Lett.69, 1178 ~1992!; G. Stolovitzky and K. R.
Sreenivasan, ‘‘RMP Colloquium: Kolmogorov’s refined similarity hypot
eses for turbulence and general stochastic processes,’’ Rev. Mod. P
66, 229~1994!; S. Chen, G. D. Doolen, R. H. Kraichnan, and L. P. Wan
‘‘Is the Kolmogorov refined similarity relation dynamic or kinematic?,
Phys. Rev. Lett.74, 1755~1995!; P. P. Wang, S. Chen, J. Brasseur, and
C. Wyngaard, ‘‘Examination of hypotheses in the Kolmogorov refin
turbulence theory through high-resolution simulations. Part 1. Veloc
field,’’ J. Fluid Mech. 309, 113 ~1996!; K. R. Sreenivasan and R. A
Antonia, ‘‘The phenomenology of small-scale turbulence,’’ Annu. Re
Fluid Mech.29, 435 ~1997!.

25J. Eggers and S. Grossmann, ‘‘Does deterministic chaos imply inter
tency in fully developed turbulence?,’’ Phys. Fluids A3, 1958~1991!.

26S. Grossmann and D. Lohse, ‘‘Intermittency in the Navier-Stokes dyn
ics,’’ Z. Phys. B89, 11 ~1992!.

27S. Grossmann and D. Lohse, ‘‘Scale resolved intermittency in tur
lence,’’ Phys. Rev. E6, 611 ~1994!; ‘‘Universality in fully developed
turbulence,’’ Phys. Rev. E50, 2784~1994!.

28J. Jimenez, A. Wray, P. G. Saffman, and R. S. Rogallo, ‘‘The structure
intense vorticity in isotropic turbulence,’’ J. Fluid Mech.255, 65 ~1993!.

29G. K. Batchelor,The Theory of Homogeneous Turbulence~Cambridge
University Press, Cambridge, 1953!.
Grossmann, Lohse, and Reeh

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



o

fu

all

is-

a

ns

a

a-

he
lent

re

f

to
30R. Benzi, S. Ciliberto, C. Baudet, and G. R. Chavarria, ‘‘On the scaling
three-dimensional homogeneous and isotropic turbulence,’’ Physica D80,
385 ~1995!.

31S. Grossmann, D. Lohse, and A. Reeh, ‘‘Developed turbulence: From
simulations to full mode reductions,’’ Phys. Rev. Lett.77, 5369~1996!.

32R. Kerr, ‘‘Higher-order derivative correlations and the alignment of sm
scale structures in isotropic numerical turbulence,’’ J. Fluid Mech.153, 31
~1985!; A. Vincent and M. Meneguzzi, ‘‘The spatial structure and stat
tical properties of homogeneous turbulence,’’ J. Fluid Mech.225, 1
~1991!.

33R. Benzi, L. Biferale, and E. Travatore, ‘‘Universal statistics of nonline
energy transfer in turbulent models,’’ Phys. Rev. Lett.77, 3114~1996!.

34S. Grossmann, D. Lohse, and A. Reeh, ‘‘Spectra and structure functio
the REWA approach to high Re turbulence,’’ inDynamical Systems and
Phys. Fluids, Vol. 9, No. 12, December 1997

Downloaded 18 Apr 2005 to 130.89.112.66. Redistribution subject to AIP
f

ll

-

r

in

Chaos, Vol. 2: Physics, edited by S. Saito, K. Shiraiwa, and Y. Aizaw
~World Scientific, Singapore, 1995!, p. 209.

35C. Uhlig and J. Eggers, ‘‘Local coupling of shell models leads to anom
lous scaling,’’ Z. Phys. B102, 513 ~1997!.

36R. Benzi, R. Tripiccone, F. Massaioli, S. Succi, and S. Ciliberto, ‘‘On t
scaling of the velocity and temperature structure functions in turbu
Rayleigh Benard convection,’’ Europhys. Lett.25, 341 ~1994!.

37R. Grauer, J. Krug, and C. Marliani, ‘‘Scaling of high-order structu
functions in magnetohydrodynamic turbulence,’’ Phys. Lett. A195, 335
~1994!.

38V. L’vov, E. Podivilov, and I. Procaccia, ‘‘Invariants for correlations o
velocity differences in turbulent fields,’’ Phys. Rev. Lett.79, 2050~1997!.

39S. Grossmann, D. Lohse, and A. Reeh, ‘‘Scaling of the irreducible SO~3!-
invariants of velocity correlations in turbulence,’’ preprint, submitted
Phys. Rev.
3825Grossmann, Lohse, and Reeh

 license or copyright, see http://pof.aip.org/pof/copyright.jsp


