116 research outputs found
Confinement as a tool to probe amorphous order
We study the effect of confinement on glassy liquids using Random First Order
Transition theory as framework. We show that the characteristic length-scale
above which confinement effects become negligible is related to the
point-to-set length-scale introduced to measure the spatial extent of amorphous
order in super-cooled liquids. By confining below this characteristic size, the
system becomes a glass. Eventually, for very small sizes, the effect of the
boundary is so strong that any collective glassy behavior is wiped out. We
clarify similarities and differences between the physical behaviors induced by
confinement and by pinning particles outside a spherical cavity (the protocol
introduced to measure the point-to-set length). Finally, we discuss possible
numerical and experimental tests of our predictions.Comment: 5 pages, 3 figures and EPAPS (4 pages, 1 figure
Dynamics of a massive intruder in a homogeneously driven granular fluid
A massive intruder in a homogeneously driven granular fluid, in dilute
configurations, performs a memory-less Brownian motion with drag and
temperature simply related to the average density and temperature of the fluid.
At volume fraction the intruder's velocity correlates with the
local fluid velocity field: such situation is approximately described by a
system of coupled linear Langevin equations equivalent to a generalized
Brownian motion with memory. Here one may verify the breakdown of the
Fluctuation-Dissipation relation and the presence of a net entropy flux - from
the fluid to the intruder - whose fluctuations satisfy the Fluctuation
Relation.Comment: 6 pages, 2 figures, to be published on "Granular Matter" in a special
issue in honor of the memory of Prof. Isaac Goldhirsc
A phase-separation perspective on dynamic heterogeneities in glass-forming liquids
We study dynamic heterogeneities in a model glass-former whose overlap with a
reference configuration is constrained to a fixed value. The system
phase-separates into regions of small and large overlap, so that dynamical
correlations remain strong even for asymptotic times. We calculate an
appropriate thermodynamic potential and find evidence of a Maxwell's
construction consistent with a spinodal decomposition of two phases. Our
results suggest that dynamic heterogeneities are the expression of an ephemeral
phase-separating regime ruled by a finite surface tension
Fluctuations in partitioning systems with few degrees of freedom
We study the behavior of a moving wall in contact with a particle gas and
subjected to an external force. We compare the fluctuations of the system
observed in the microcanonical and canonical ensembles, at varying the number
of particles. Static and dynamic correlations signal significant differences
between the two ensembles. Furthermore, velocity-velocity correlations of the
moving wall present a complex two-time relaxation which cannot be reproduced by
a standard Langevin-like description. Quite remarkably, increasing the number
of gas particles in an elongated geometry, we find a typical timescale, related
to the interaction between the partitioning wall and the particles, which grows
macroscopically.Comment: 10 pages, 12 figure
Scaling properties of field-induced superdiffusion in Continous Time Random Walks
We consider a broad class of Continuous Time Random Walks with large
fluctuations effects in space and time distributions: a random walk with
trapping, describing subdiffusion in disordered and glassy materials, and a
L\'evy walk process, often used to model superdiffusive effects in
inhomogeneous materials. We derive the scaling form of the probability
distributions and the asymptotic properties of all its moments in the presence
of a field by two powerful techniques, based on matching conditions and on the
estimate of the contribution of rare events to power-law tails in a field.Comment: 17 pages, 8 figures, Proceedings of the Conference "Small system
nonequilibrium fluctuations, dynamics and stochastics, and anomalous
behavior", KITPC, Beijing, Chin
Rare events and scaling properties in field-induced anomalous dynamics
We show that, in a broad class of continuous time random walks (CTRW), a
small external field can turn diffusion from standard into anomalous. We
illustrate our findings in a CTRW with trapping, a prototype of subdiffusion in
disordered and glassy materials, and in the L\'evy walk process, which
describes superdiffusion within inhomogeneous media. For both models, in the
presence of an external field, rare events induce a singular behavior in the
originally Gaussian displacements distribution, giving rise to power-law tails.
Remarkably, in the subdiffusive CTRW, the combined effect of highly fluctuating
waiting times and of a drift yields a non-Gaussian distribution characterized
by long spatial tails and strong anomalous superdiffusion.Comment: 11 pages, 3 figure
Static correlations functions and domain walls in glass-forming liquids: the case of a sandwich geometry
The problem of measuring nontrivial static correlations in deeply supercooled
liquids made recently some progress thanks to the introduction of amorphous
boundary conditions, in which a set of free particles is subject to the effect
of a different set of particles frozen into their (low temperature) equilibrium
positions. In this way, one can study the crossover from nonergodic to ergodic
phase, as the size of the free region grows and the effect of the confinement
fades. Such crossover defines the so-called point-to-set correlation length,
which has been measured in a spherical geometry, or cavity. Here, we make
further progress in the study ofcorrelations under amorphous boundary
conditions by analyzing the equilibrium properties of a glass-forming liquid,
confined in a planar ("sandwich") geometry. The mobile particles are subject to
amorphous boundary conditions with the particles in the surrounding walls
frozen into their low temperature equilibrium configurations. Compared to the
cavity, the sandwich geometry has three main advantages: i) the width of the
sandwich is decoupled from its longitudinal size, making the thermodynamic
limit possible; ii) for very large width, the behaviour off a single wall can
be studied; iii) we can use "anti-parallel" boundary conditions to force a
domain wall and measure its excess energy. Our results confirm that amorphous
boundary conditions are indeed a very useful new tool inthe study of static
properties of glass-forming liquids, but also raise some warning about the fact
that not all correlation functions that can be calculated in this framework
give the same qualitative results.Comment: Submited to JCP special issue on the glass transisio
Brownian ratchet in a thermal bath driven by Coulomb friction
The rectification of unbiased fluctuations, also known as the ratchet effect,
is normally obtained under statistical non-equilibrium conditions. Here we
propose a new ratchet mechanism where a thermal bath solicits the random
rotation of an asymmetric wheel, which is also subject to Coulomb friction due
to solid-on-solid contacts. Numerical simulations and analytical calculations
demonstrate a net drift induced by friction. If the thermal bath is replaced by
a granular gas, the well known granular ratchet effect also intervenes,
becoming dominant at high collision rates. For our chosen wheel shape the
granular effect acts in the opposite direction with respect to the
friction-induced torque, resulting in the inversion of the ratchet direction as
the collision rate increases. We have realized a new granular ratchet
experiment where both these ratchet effects are observed, as well as the
predicted inversion at their crossover. Our discovery paves the way to the
realization of micro and sub-micrometer Brownian motors in an equilibrium
fluid, based purely upon nano-friction.Comment: main paper: 4 pages and 4 figures; supplemental material joined at
the end of the paper; a movie of the experiment can be viewed
http://www.youtube.com/watch?v=aHrdY4BC71k ; all the material has been
submitted for publication [new version with substantial changes in the order
of the presentation of the results; differences with previous works have been
put in evidence
Non-equilibrium fluctuations in a driven stochastic Lorentz gas
We study the stationary state of a one-dimensional kinetic model where a
probe particle is driven by an external field E and collides, elastically or
inelastically, with a bath of particles at temperature T. We focus on the
stationary distribution of the velocity of the particle, and of two estimates
of the total entropy production \Delta s_tot. One is the entropy production of
the medium \Delta s_m, which is equal to the energy exchanged with the
scatterers, divided by a parameter \theta, coinciding with the particle
temperature at E=0. The other is the work W done by the external field, again
rescaled by \theta. At small E, a good collapse of the two distributions is
found: in this case the two quantities also verify the Fluctuation Relation
(FR), indicating that both are good approximations of \Delta s_tot.
Differently, for large values of E, the fluctuations of W violate the FR, while
\Delta s_m still verifies it.Comment: 6 pages, 4 figure
- …