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The problem of measuring nontrivial static correlations in deeply supercooled liquids made recently
some progress thanks to the introduction of amorphous boundary conditions, in which a set of free
particles is subject to the effect of a different set of particles frozen into their (low temperature)
equilibrium positions. In this way, one can study the crossover from nonergodic to ergodic phase, as
the size of the free region grows and the effect of the confinement fades. Such crossover defines the
so-called point-to-set correlation length, which has been measured in a spherical geometry, or cavity.
Here, we make further progress in the study of correlations under amorphous boundary conditions
by analyzing the equilibrium properties of a glass-forming liquid, confined in a planar (“sandwich”)
geometry. The mobile particles are subject to amorphous boundary conditions with the particles in
the surrounding walls frozen into their low temperature equilibrium configurations. Compared to the
cavity, the sandwich geometry has three main advantages: (i) the width of the sandwich is decou-
pled from its longitudinal size, making the thermodynamic limit possible; (ii) for very large width,
the behaviour off a single wall can be studied; (iii) we can use “anti-parallel” boundary conditions
to force a domain wall and measure its excess energy. Our results confirm that amorphous bound-
ary conditions are indeed a very useful new tool in the study of static properties of glass-forming
liquids, but also raise some warning about the fact that not all correlation functions that can be cal-
culated in this framework give the same qualitative results. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4771973]

I. INTRODUCTION

The sharp slowdown observed in supercooled liquids at
low temperatures has long been conceptually connected to
the buildup of structural (static) correlations. Yet, due to the
amorphous nature of the excitations, it has proved rather diffi-
cult to identify them and to measure their size. For this reason,
dynamical correlations1–12 were detected much before static
ones, and only recently were structural correlations unveiled,
using novel techniques.13–17

Among these techniques, numerical simulations with
amorphous boundary conditions (ABC), and the related point-
to-set correlation length ξ , have proved very fruitful.14, 18–23

Implementing ABCs is simple, at least in numeric simula-
tions. Consider a set of mobile and another one of frozen par-
ticles and let the mobile particles evolve under the influence
of the frozen ones, eventually reaching thermodynamic equi-
librium. The simplest case is when the frozen particles belong
to a single equilibrium configuration surrounding a spherical

a)Electronic mail: ggradenigo@gmail.com.

cavity of mobile particles, of radius R. It is possible then to de-
fine an overlap q(R) and to measure the similarity at the center
of the sphere between two configurations. The dependence of
the overlap on the linear size R of the cavity yields the corre-
lation length ξ , defined by the crossover at R ∼ ξ among the
values q(R) ∼ 1 (almost identical configuration) and q(R) ∼ 0
(statistically independent configurations).

The original ABC spherical realization can be general-
ized to different geometries, where the frozen particles do not
necessarily form a closed cavity.20, 21, 24 In this work, we study
the case of a planar (or “sandwich”) geometry (see Fig. 1).
As with the spherical geometry, in the sandwich we can cal-
culate a point-to-set length by studying the sandwich width
beyond which the internal mobile particles reach ergodicity.
In this respect, our study aims to verify the results obtained
in the cavity and test their robustness. In particular, we are
interested to check whether or not the anomalous nonexpo-
nential behaviour of the point-to-set correlation function at
low T observed in the spherical geometry19 is also found
in the sandwich. To check how general is this nonexponen-
tial behaviour is important because it is one of the very few

0021-9606/2013/138(12)/12A509/9/$30.00 © 2013 American Institute of Physics138, 12A509-1
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FIG. 1. Cartoon of the sandwich geometry. In the ‘parallel” (or αα) setup
(top) both frozen walls are taken from the same equilibrium configuration,
while in the “anti-parallel” (αβ) case, they come from different configura-
tions (bottom).

qualitative thermodynamic landmarks of the deeply super-
cooled phase.

But the sandwich also allowed us to study cases that are
out of reach in the cavity. First, in the sandwich the width
d and the longitudinal size L are independent parameters, so
that we can perform the limit L → ∞ while the confine-
ment length keeping d finite. This thermodynamic limit is
clearly impossible in the cavity. This limit is important, as
by increasing the number of mobile particles at constant de-
gree of confinement, we can check whether or not the finite-
size crossovers of the correlation functions turn into bona fide
transitions.

Second, when the two walls are very far from each other
(d → ∞), we can study the decay of the overlap off a single
wall, as a function of the distance z from the wall. This is not
strictly impossible in spherical geometry, but in that case one
could be exposed to spurious curvature effects that are absent
in the sandwich.

Third, in the planar geometry we can use different amor-
phous boundary conditions on the two sides of the sandwich
(Fig. 1, bottom), which is also impossible in the cavity. This
sort of “anti-parallel” boundary conditions can be used to
force a domain wall in the system, and therefore to measure its
excess energy and the stiffness exponent θ . These quantities
are crucial in any phenomenological description of the glass
transition, so that any new tool able to provide information on
these quantities may be helpful.

II. MODEL AND SIMULATION DETAILS

We study the soft-sphere binary mixture,25 a simple
model of supercooled liquids widely studied before, and in
which the point-to-set correlation has been computed using a
cavity. We use the accelerated Swap Monte Carlo algorithm26

to thermalize the system at temperatures as low as possible.
We run simulations at T = 0.482, 0.350, 0.246, 0.202. The
first two temperatures correspond to the high-temperature liq-
uid, the third is near the “onset” or “landscape-influenced”
temperature27 and the lowest temperature lies in the super-
cooled regime, in which the landscape is dominated by min-
ima of the potential energy rather than saddle points.

The confined system is generated from configurations
taken from equilibrated periodic-boundary-conditions runs.
These runs were done with density ρ = 1 and box sizes L
= 16 and L = 25.3. At each temperature we then chose several
(from 16 to 24) configurations and artificially froze in their
equilibrium positions all but M particles contained within a
region of the simulation box in the shape of a box of size
2d × L2 (we measure d along the z axis).

In order to keep the density fixed within the region of
mobile particles, it is a standard practice to place virtual walls
at the border of such mobile regions. What we do is the fol-
lowing: taking configurations of the liquid system, we place a
hard wall potential enclosing the free particles. This destroys
translational invariance along the z axis, but not along the xy
planes, creating a sandwich of mobile particles surrounded by
two infinite walls of frozen liquid.

The main observable we consider is the infinite time limit
of the local density-density correlations. More precisely, we
define the overlap q(z; d), as follows: we partition the simu-
lation box in many small cubic boxes of side �, such that the
probability of finding more than one particle in a single box
is negligible. If ni is the number of particles in box i, then

q(z; d) = lim
t→∞

1

�3Ni

∑
i∈v

〈ni(t0)ni(t0 + t)〉, (1)

where the sum runs over all boxes that lie on a plane parallel
to the xy plane at the given distance z from one reference wall,
Ni is the number of boxes in each of those planes, and 〈. . . 〉
indicates a thermal average. Normalization is such that the
overlap of two identical configurations is 1 on average, while
for totally uncorrelated configurations q=q0 ≡ �3 = 0.062876.

III. DIFFERENT STATIC LENGTHSCALES

In this section, we study the overlap, Eq. (1), in the sand-
wich geometry described above, in which mobile particles are
confined within a volume 2dL2 by two walls made of frozen
particles (top scheme in Fig. 1). In our description, d is the
half-width of the sandwich; we believe this is the correct vari-
able to compare our results (especially lengthscales) with the
spherical cavity case. It is important to note that both walls are
made from particles taken from the same equilibrated config-
uration.

In general, the overlap is a measure of the nonergodicity
of the mobile part of the sandwich due to the frozen bound-
ary conditions. When the overlap is nonzero (more precisely:
larger than its ergodic value q0) it means that the phase space
available to the particles’ relaxation is reduced by the confine-
ment. It is therefore natural to ask how “far away” the walls
need to be so that ergodicity is restored. In the case of the
sandwich, this question can be asked in two ways:

Downloaded 04 Jan 2013 to 163.10.21.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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1. How big must the wall separation be so that the liquid
inside behaves like the bulk?

2. Given a very large (or infinite) cavity, how far from the
walls must one look so that the liquid behaves like in the
bulk?

The first question implies that one is observing the overlap as
a function of d at some reference position within the sandwich
(typically at the center, since influence of the walls very near
the interface is always expected). In the second question, one
considers the overlap as a function of z at fixed, very large
d. As we shall see, the two questions have qualitatively and
quantitatively different answers.

A. Point-to-set correlation length

We first study the decay of the overlap following the
point-to-set prescription, i.e., measuring the overlap at the
center of the sandwich (z = d) and varying the distance d
between the walls (by symmetry, we can actually average the
overlap over the whole central plane). We call this point-to-set
overlap, computed at the central plane qc(d). The behaviour of
this quantity is shown in Fig. 2 for four different temperatures.
The scale of decay of this function defines the point-to-set cor-
relation length ξ .

A notable feature of qc(d) is that its decay crosses over
from simple exponential at high temperatures to nonexponen-
tial at low temperatures. In the low T phase a simple exponen-
tial fit does a very bad job, while the curves can be fitted via
a “compressed exponential” form,

qc(d) = � exp[−(d/ξ )ζ ] + q0, (2)

where the anomaly exponent ζ measures the deviation from
exponentiality. This specific form is by no means the only one
capable of capturing the nonexponential shape. The relevant
point is that such nonexponential behaviour is present, and
that it is useful to have a scalar parameter (in this case ζ ) to
quantify it.

At high temperatures a semilog plot shows that the curves
are reasonably exponential, so in order to avoid overfitting we
fix ζ = 1 and we fit the data to a pure exponential. On the
other hand, at low temperatures there is a clear deviation from

FIG. 2. Overlap at the center of the sandwich vs. sandwich half-width d in
the parallel setup for (from left to right) T = 0.482, 0.350, 0.246, 0.202. Lines
are exponential or compressed-exponential fits (see text). (Inset) Same data
in semilog plot.

TABLE I. Point-to-set correlation length ξ , and anomaly exponent ζ , from a
fit of Eq. (19); penetration length λ, from a fit of Eq. (20); and excess energy
decay lengthscale l, from a fit of Eq. (21). At the highest temperature the
value of l has large uncertainty as we have very few nonzero values of �E.

T ξ ζ λ l

0.482 0.48 1 0.47 0.15
0.350 0.56 1 0.56 0.33
0.246 1.50 2.1 0.69 0.43
0.202 2.00 2.7 0.79 0.50

exponentiality (inset of Fig. 2), so that the nonexponential fit
(Eq. (2)) is used. At the lowest T we obtain ζ = 2.7 ± 0.2 (see
Table I for all values of ζ ).

This progressive sharpening of the decay at low temper-
atures (growing of the anomaly exponent) is also found in
the spherical cavity,19 but the numerical value of the expo-
nent ζ is different (lower) in the sandwich case. Thus, the
geometry of the system may influence the strength of the ex-
ponential/nonexponential crossover but the existence of the
crossover itself seems not to depend on the geometry and it is
therefore a robust result.

B. Penetration length

We now consider the decay of the overlap off one single
wall. It is clear from Fig. 3 that for a large enough value of
the sandwich width d, the overlap has enough room to decay
to its liquid value q0 at the central plane, at all temperatures.
Therefore, the decay of the overlap, q(z, d 	 ξ ), as a func-
tion of the distance z from one of the two walls, is perfectly
equivalent to the decay of the overlap from a single wall in a
semi-infinite geometry. We call this quantity simply q(z).

Figure 4 shows the behaviour of q(z) focusing on one sin-
gle wall. The first feature that we notice, in comparison with
the point-to-set correlation function, is that at all temperatures
data are well fitted with a simple exponential,

q(z) = exp[−z/λ] + q0, (3)

where λ is the penetration length. Independently from the fit
quality, the pure exponential behaviour is evident from the
semilog plot (inset of Fig. 4). This result is in agreement

FIG. 3. Overlap in the parallel setup as a function of z for a sandwich of
half-width d = 4 at several temperatures. The free region is wide enough that
the overlap can reach its bulk value q0 near the center.

Downloaded 04 Jan 2013 to 163.10.21.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 4. Overlap vs. d − z (distance from wall) at fixed d (same data as
Fig. 3) with pure exponential fits. (Inset) Same data in semilog scale.

with the results obtained with a single wall in Refs. 20 and
21: an exponential decay at all temperatures with no sign of
crossover to nonexponentiality. This feature is a remarkable
difference with respect to the nonexponential point-to-set cor-
relation qc(d). Such difference is perhaps not surprising: the
two quantities are conceptually not the same, as we shall ar-
gue in Sec. IV.

Apart from the functional form of the decay, another dif-
ference that we immediately notice is that the penetration
length λ seems to be smaller than the correlation length ξ .
We will return to this in Sec. VI.

IV. MOSAIC IN THE SANDWICH

A. Naive argument

We have shown in Subsection III A that the decay of
the overlap in the sandwich has the same exponential/super-
exponential crossover with temperature that is observed in
the spherical geometry. Such anomalous nonexponential be-
haviour at low T was explained in Ref. 19 by using a gener-
alization of the random first order transition (RFOT) frame-
work. In this section we will show that, at least at the naïve
level, the same RFOT arguments that hold in the cavity can
be also applied to the present sandwich geometry.

The basic idea of RFOT is that the relaxation of a con-
fined system is regulated by trade-off between a cost and a
gain of exploring states other from the one fixed into the amor-
phous boundary conditions. The cost is the free energy the
system has to pay to form an interface when it changes state,
whereas the gain is the entropic surplus the system enjoys by
changing state.28–30 The slight complication of the sandwich
is that one must be careful to take account of its anisotropic
geometry. Unless we are at some very specific value of the
parameters (that we shall discuss later), it seems reasonable
to assume that the rearrangement of the mobile part of the
sandwich happens independently within uncorrelated regions,
whose longitudinal size is larger that the correlation length ξ .
If we call A and B two such regions, we are saying that

ZA+B ≈ ZAZB. (4)

This means that the overlap of the mobile particles will be
basically a longitudinal average of the overlaps of such un-

correlated regions,

qc(d, L) = 1

n

n∑
r=1

q(r)
c (d), (5)

where n is the number of uncorrelated regions along the
sandwich.

If we accept this, then the RFOT argument can be run
over one independent region of longitudinal size ∼ξ , and of
width ∼d. Exactly as in the cavity, the entropic gain is (all
relations are given in the three-dimensional case)

�Fgain ∼ T �ξ 2d. (6)

The surface tension cost, however, is trickier than in the cav-
ity. On one hand, we know that it must scale like a length to
the power θ , the stiffness exponent. On the other hand, we also
expect from extensivity reasons that this cost must scale like
the longitudinal size of the rearranging region to the power
d − 1 = 2: surely, if we build a super-sandwich by putting
many sandwiches aside, the total cost must be additive. We
can encapsulate these two requirements by writing

�Fcost ∼ Ydθf (d/ξ ), (7)

where f(d/ξ ) is a scaling function that, due to extensivity, must
obey the relation

f (d/ξ ) ∼ ξ 2/d2, ξ 	 1. (8)

In the end, we get

�Fcost ∼ Yξ 2dθ−2. (9)

As usual in the RFOT argument, we obtain the correlation
length, i.e., the lengthscale at which the overlap decays to
zero, as the value of d where the two contributions balance,
�Fgain ∼ �Fcost. This yields

dRFOT ∼
(

Y

T �

) 1
3−θ

. (10)

This is the same prediction as RFOT gives in a cavity geom-
etry. This sharp RFOT scenario should then be smoothed by
including the surface tension fluctuations, following Ref. 19.
In this way, one gets a qc(d) that decays on a scale dRFOT, and
whose decay is sharper and sharper (larger exponent ζ ) the
lower the temperature, in agreement with what we find nu-
merically. In this context, the point-to-set correlation length ξ

must be identified with the RFOT lengthscale dRFOT,

ξ ∼ dRFOT. (11)

Note that, at the level of this naïve treatment, the difference
between the two walls vs. the single wall geometry, and there-
fore the difference between qc(d) and q(z), is quite clear. In
the single wall case, the entropic gain is infinite, as flipping
the entire semi-plane is an advantage over any interface en-
ergy. So, we do not expect any trade-off in that case. However,
even in the single wall geometry, the best distance λ where to
locate the interface will be nontrivial, since it may be entropi-
cally inconvenient for the system to squeeze the interface too
close to the wall.31 But it will be the entropy of the rough in-
terface, not that of the bulk, to matter. For this reason, we do
not expect the growth of λ to be regulated by a classic RFOT
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trade-off, while we do expect so for the point-to-set length ξ .
No surprise, then, that the two quantities are different.

B. Sharpening in the thermodynamic limit?

As we argued before, an advantage of the sandwich ge-
ometry over the cavity is that one can tune the width d and the
longitudinal size L independently. This means that (at least
in principle) in the sandwich one can perform the thermo-
dynamic limit L → ∞ at fixed d. However, because of the
statistical factorization hypothesis (Eq. (4)), the longitudinal
size L plays no role at all in the RFOT argument. In general,
this is not necessarily correct. It has been argued in Ref. 32
that, depending on the specific system’s geometry and on the
dimensionality, the limit L → ∞ can actually turn the qc(d)
smooth decay with d, into a bona fide, sharp transition at d
= dPTS, even at T > Tk. We will only sketch the argument
here.

What we have disregarded above is the interaction be-
tween the different rearranging regions in the mobile part.
Consider two neighbouring regions, A and B, and ask which is
the propensity of A to decorrelate from its initial state. Clearly,
this depends on the frozen boundaries enclosing A, but also on
the state of the neighbouring particles in B.33, 34 The state of B
may favour or not the ergodization of A,33, 34 and one should
take into account this interaction. According to the theoretical
scenario of Ref. 32, it turns out that exactly at the transition
point d = dRFOT, this longitudinal interaction can make the
sandwich long-range correlated along the longitudinal plane.
This phenomenon would work in the direction of making the
transition between IN and OUT states sharper and sharper.
However, in Ref. 32 it is also remarked that such transition is
smoothed by the presence of the disorder (disorder is gener-
ated by the surface tension fluctuations along the sandwich)
and that this has the effect to suppress the transition in a d = 3
sandwich, which is our case. Therefore, one should not expect
any particular effect when increasing L (the transition would
not be suppressed in a d = 4 sandwich, nor in a d = 3 system
with randomly frozen particles, though — see Ref. 34).

We report the overlap qc(d, L) for two different sizes, L
= 16 and L = 25, in Fig. 5. Indeed we do not find any ev-
idence of a sharpening of the decay of for larger L, which
confirms the expectation above. For a three-dimensional sand-

FIG. 5. Overlap at center vs. sandwich half-width d at T = 0.203 and two
values of L.

wich, thus, the naïve RFOT argument provided at the begin-
ning of this section is probably good enough.

V. “ANTI-PARALLEL” BOUNDARY CONDITIONS

We now turn to the study of the excess energy produced
by forcing an interface in the mobile part of the sandwich. To
do this we use “anti-parallel” boundary conditions: we freeze
particles on one wall in a configuration α, and those on the
other wall in a different configuration β (see Fig. 1, bottom).
The reason to study this geometry is twofold. First, the surface
free energy cost is a key ingredient of the RFOT theory,30, 35

but little is known about it. The very possibility of measuring
the surface tension between amorphous states is at present un-
der debate,36 and recently arguments against the existence of
amorphous domain walls (a question which is closely related
to the previous one) across the bulk of the glassy liquid have
been proposed.34 Moreover, it is not clear if the surface ten-
sion in a supercooled liquid is a purely entropic phenomenon
or if it also includes an energy part due to the mismatch of
different states.

Second, the numerical study of the excess energy pro-
vides in principle a method to estimate the stiffness exponent
θ , another crucial player in the RFOT formulas, regulating the
growth of the correlation length. Unfortunately, we shall see
that, although the sandwich geometry is in principle ideal to
determine θ through the technique of the aspect ratio scaling,
in practice the present values of the correlation length are not
large enough to make an unambiguous determination of θ .

A. Interface energy

We define the excess energy as the difference between
the extensive energy of the mobile part of the sandwich with
“anti-parallel” boundary conditions and “parallel” boundary
conditions,

�E(d) = Eαβ(d) − Eαα, (12)

averaged over 16 samples. It is important to note that, if we
average over a large enough number of samples, the energy
Eαα is equal to the (extensive) equilibrium energy. In the anti-
parallel case, relaxation of the energy is in general very slow,
and it get slower for smaller d. This fact is true even using
the accelerated swap dynamics (Fig. 6). Clearly, the system is

FIG. 6. Excess energy per mobile particle at T = 0.246 and several values of
d, together with the bulk (PBC) average value.
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FIG. 7. Excess energy vs. d at several temperatures and L = 16. Lines are
exponential fits. (Inset) Same data in semilog scale.

unhappy with the αβ boundary, likely because of the forcing
of a domain wall. For this reason, at the smallest values of d
we do not reach a plateau of the energy even for our longest
time. In these cases, we extrapolate the limiting value of the
excess energy by using a power-law fit,

�E(t, d) = �E(d) + At−α. (13)

Figure 7 shows the excess energy �E(d) for all the values
of d studied. As expected, �E decays when increasing d, and,
at fixed d, the excess energy grows upon lowering the tem-
perature. At the largest temperature T = 0.482 though, �E
is basically always zero except for the smallest d. The fact
that the energy cost to match independent amorphous config-
urations vanishes for high temperatures seems to support the
existence of the spinodal crossover proposed in Refs. 37–39.

At the three lowest temperatures, the excess energy
seems to be well described by an exponential decay
with d,

�E(d) ∼ e−d/l, (14)

(see inset of Fig. 7). We must note that, at variance with the
case of the point-to-set correlation, in the excess energy we do
not find any hint of nonexponentiality. Moreover, the decay
of �E(d) defines a new lengthscale l. We shall investigate in
Sec. VI whether l can be identified with the point-to-set cor-
relation length ξ or with the penetration length λ.

B. Aspect ratio scaling

It is interesting, and potentially useful, to analyze the
excess energy using some simple scaling relations, partially
inspired by the aspect-ratio-scaling technique introduced in
Ref. 40. The basic ideas of this subsection have been already
used in the naïve RFOT argument of Sec. V A.

The relevant lengthscales for �E are d, l and L, the lon-
gitudinal size of the sandwich. The first thing we can say is
that the excess energy will scale like a length to the exponent
θ (which is basically a definition of the stiffness exponent).
Hence,

�E ∼ YLθf (d/L, l/L), (15)

where Y is the (generalized) surface tension. One can choose
any of the three lengths to fix the dimensions by appropriately
changing the scaling function f. The second requirement is

that the energy and the excess energy must be extensive: in
the limit L 	 d, the �E from different pieces of the surface
must add up. This implies that,

�E ∼ L2, (16)

a relation very well obeyed by our data. For this to be true, we
need that

f (d/L, d/l) ∼ (L/d)2−θg(d/l). (17)

Moreover, as we have seen from the data, the scale l seems
well set by an exponential decay, so it is reasonable to assume
g(x) = e−x, so that

�E(d) ∼ YL2 1

d2−θ
e−d/l . (18)

This is an interesting formula, and one could in principle use
it to fit the stiffness exponent θ . In particular, the formula sug-
gests that, if a purely exponential fit is satisfactory (as in our
case), then θ ∼ 2. In practice, the formula is useful to dis-
criminate different values of θ only for large d; but for �E to
be nonzero at large d, we need very large values of l, i.e., very
low temperatures, which we do not have. In fact, any exponent
θ in the interval [1, 2] does an equally good job in fitting our
data for �E(d). In particular, distinguishing between θ = 3/2
and θ = 2 is completely out of the question. Yet, the method
is conceptually interesting, and future simulations, at lower T,
may eventually use it to determine the stiffness exponent.

VI. COMPARISON OF THE DIFFERENT
LENGTHSCALES AND THE ISING CASE

Let us summarize the three lengthscales we have mea-
sured. The first one is the point-to-set correlation length, ξ ,
defined as the decay scale of the overlap measured at the cen-
ter of a sandwich of half-width d,

qc(d) ∼ exp[−(d/ξ )ζ ] + q0. (19)

Previous investigations suggest that this is the true static cor-
relation length of the system, the one relevant for the struc-
tural rearrangement.41 Moreover, there is evidence19 that ξ

has to be identified with the RFOT correlation length, dis-
cussed above. The remarkable feature of the point-to-set cor-
relation length is that its associated correlation function has a
nonexponential decay at low temperature.

The second lengthscale is the penetration length λ, which
regulates the decay of the overlap off a single wall in a semi-
infinite geometry,

q(z) ∼ exp[−z/λ] + q0. (20)

This lengthscale seems to have a different physical meaning
than the correlation length ξ , as also suggested in Ref. 32. It
seems to embody the extent to which the effect of a single
frozen wall penetrates into the system, rather than the average
size of a rearranging region. At variance with the point-to-set
correlation length, λ regulates a purely exponential decay of
the overlap. Regarding the penetration length, there are inter-
esting, although perhaps not compelling, similarities between
our results and those of Ref. 42.
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FIG. 8. Penetration length λ vs. point-to-set correlation length ξ .

Finally, we measured the lengthscale l associated to the
decay in d of the excess energy produced by imposing “anti-
parallel” boundary conditions,

�E(d) = Eαβ − Eαα ∼ exp[−d/l]. (21)

As in the case of the penetration length, the excess energy
lengthscale l is associated to a purely exponential decay, at
least down to our lowest available temperature.

What can be said about the quantitative relationship (if
any) between these three lengthscales? We report them all in
Table I, together with the anomaly exponent ζ .

One could object that much of the comparison depends
on the fitting procedure of the data, which is not a nice thing.
This is certainly a concern. However, we notice that extracting
the lengthscales by crossing the various functions with arbi-
trary threshold would not be any better, for two reasons: first,
in presence of a nonexponential decay (as qc(d) unmistakably
has), with a T-dependent anomalous exponent ζ , the arbitrary
value of the threshold can strongly bias the dependence of ξ

on T; second, these are dimensionally different, inhomoge-
neous functions, so it would be hard to choose coherently a
crossing point for each of them. An honest fit is the best we
can do.

From the table, we see that the correlation length ξ is
larger than the other two scales. Of course, what really matters
is their mutual T-dependence, namely: is there any of them
that grows significantly faster than the others, when lowering
T? More precisely, we would like to understand whether or
not these lengths are ruled by different exponents. Because
of this, comparing the three plots, ξ (T), λ(T), l(T), is not a
good idea: constant factors would show up as increasing dif-

FIG. 9. Energy decay length l vs. point-to-set correlation length ξ .

FIG. 10. Energy decay length vs. two-spin correlation length for the Ising
model in the square lattice. Data are from Monte Carlo simulations on a 100
× 100 lattice with single-flip Metropolis dynamics performed above the crit-
ical point, at temperatures T = 2.5J, T = 2.4J, T = 2.35J and T = 2.32J,
where J is the Ising coupling constant (the critical point is Tc ≈ 2.269J). The
correlation length was obtained from a fit of the spin-spin space correlation
function C(r) = 〈S(0)S(r)〉. To determine the length l, sandwich configura-
tions were prepared as explained for the liquid case, measuring the excess
energy �E(d) = Eαβ − Eαα for d = 1, 2, 3, 4, 5, 7.5, 10, 15, 20, 25 and 45
lattice spacings, and fitting to an exponential decay.

ferences, conveying the (wrong) idea that one length is grow-
ing faster than the other. The best thing to do is to plot one
lengthscale vs. the other, parametrically in T. This is what we
do in Figs. 8 and 9.

The result of this comparison is unfortunately not conclu-
sive. Even though, as we already said, the correlation length
ξ is larger than the other two, all mutual dependencies are not
far from linear. This means that, with such data, we cannot
claim that ξ is growing with an exponent significantly dif-
ferent from the other two, which would be the only proof of
a qualitative difference between these scales. Of course, our
data do not either rule this out.

In such a murky situation, some conceptual help may per-
haps come from the well-known Ising model. There one can
use (true) anti-parallel boundary conditions to force a domain
wall (below the critical temperature Tc). Then there is a finite
surface tension and the excess free energy (anti-parallel minus
parallel) in the limit d → ∞ tends to the finite value σLd − 1,
where σ is the surface tension. For T > Tc, one can instead
impose (similar to what we have done above) two different
paramagnetic configurations on the two sides of the sandwich
and measure the excess energy. In this case, we expect the ex-
cess energy to decay to zero for large d, but on what scale does
this happen? Simulations in two-dimensions show that the ex-
cess energy decays exponentially with a lengthscale l, which
we can compare with the Ising correlation length ξ , calculated
from the standard spin-spin space correlation function. Data
show that l and ξ scale linearly with each other (parametri-
cally in T, Fig. 10), though l is somewhat 2 smaller than ξ .
Therefore, in Ising, correlation decay and excess energy de-
cay seem to track each other quite closely.

VII. CONCLUSIONS

We have studied the point-to-set correlation function in
a linear (sandwich) geometry, with different kinds of bound-
ary conditions. This has allowed us to define several growing
lengthscales and to study their mutual relationships. Before
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summarizing and commenting our results, let us mention that
Szamel and Flenner in a recent work43 have raised some
warnings about interpreting the point-to-set correlation length
in a geometry different from the present one, the so-called
random pinning geometry.44 The point of Ref. 43 is that
much of the signal one observes in the correlation function
has a trivial origin and it should not be associated with any
many-body correlations. We are unable to judge whether this
argument applies also to the sandwich geometry we study
here, but it seems fair to make the reader aware of this
warning.

Similar to what we found in the spherical geometry,19

the sandwich data show a crossover from exponential to non-
exponential relaxation of the point-to-set correlation func-
tion, upon lowering the temperature. We remark that such
crossover is one of the very few (if not the only one) static
landmarks differentiating at the qualitative level the fluid
phase from the deeply supercooled phase in glass-forming
liquids. Having found this feature now in two different ge-
ometries makes it quite a robust phenomenon.

Up to now, the only reasonable explanation of such
sharper-than-exponential relaxation has been given in the con-
text of RFOT. However, the point-to-set construction will pick
up correlations and measure correlations length even in sys-
tem that are not ruled by RFOT. An obvious example is the
simple Ising model, where the point-to-set measures the stan-
dard, very much non-RFOT, correlation length.45 Moreover,
even in glassy systems the situation may be complicated: a
nontrivial point-to-set correlation length has been detected in
the kinetically constrained models studied in Refs. 46 and 47
where RFOT is certainly not at work. In fact, we think that
this adds to the relevance of the point-to-set construction as
tool of investigation. Moreover, even in more standard glass-
formers, as the one studied here, if one freezes the fixed par-
ticles in a random (infinite T) configuration, as recently done
in Ref. 48, one will certainly detect a (growing) lengthscale,
which is not necessarily ruled by a RFOT scenario (although
it may be related to it). For all these reasons, we believe that
accompanying the observation of a growing correlation length
with an equally growing nonexponential behaviour is the most
important landmark we find of some RFOT signature.

We reported a naïve RFOT argument for the sandwich
and showed that there should be no essential variations (at
least in three dimensions) with respect to the standard argu-
ment one uses in the cavity geometry. Our sandwich results
therefore give further support to the theoretical connection be-
tween point-to-set nonexponential relaxation and RFOT.

A more thorough formulation of the RFOT argument,
based on a renormalization group framework, could turn the
nonexponential, but smooth, drop of the overlap at d = dRFOT,
into a true transition, in the limit L → ∞.32 The very exis-
tence of such limit would be one of the main benefits of the
sandwich vs. the cavity geometry. However, this transition is
supposed to be smeared out by disorder (surface tension fluc-
tuations) in a three-dimensional sandwich,32 and indeed, by
substantially increasing L, we do not find any relevant change
in the point-to-set correlation function.

A different experiment consists in measuring the over-
lap decay off a single wall. In this case, we found a

behaviour rather different from the point-to-set correlation
function. First, and most important, this decay is purely ex-
ponential, even at the lowest temperature studied, where the
point-to-set correlation function is clearly nonexponential.
Hence, the single wall seems less than ideal to characterize
at the qualitative level the deeply supercooled phase.

Second, the lengthscale of this single-wall decay, i.e., the
penetration length λ, seems to be smaller than the point-to-
set correlation length, ξ . According to Ref. 49, both ξ and λ

should diverge at Tk, but with different exponents, in particu-
lar the divergence of ξ should be sharper than that of λ. This
is due to the fact that λ is not controlled by the RFOT entropy
vs. surface tension competition mechanism so directly as ξ

is. Even though we are far (to say the least) from the T ∼ Tk

region where the RG arguments of Ref. 49 hold, we can at
least say that our numerical data are not in contradiction with
this scenario. We should however point out that the recent
RG analysis of Ref. 50 is in disagreement with the results of
Ref. 49.

We used “anti-parallel” boundary conditions in the sand-
wich to measure the excess energy associated to an interface.
This quantity seems to decay purely exponentially with the
half-width d of the sandwich, over a lengthscale l that grows
by lowering the temperature. Unfortunately, the value of l we
obtain even at the lowest T is not large enough to make it pos-
sible an estimate of the stiffness exponent θ using aspect ra-
tio scaling. However, the technique seems promising in this
context, and perhaps future simulation will reach a regime
able to discriminate between different (theoretical) values
of θ .

An obvious question is whether and how the lengthscale
of the excess energy l is related to the other two lengthscales,
and in particular to the correlation length, ξ . We do not have a
final answer to this question. Even though ξ seems to be quan-
titatively larger than l (about a factor 4), there is no clear evi-
dence of a nonlinear connection between the two lengths. On
one hand, by following an economy criterion, we are tempted
to conclude that point-to-set and excess energy are regulated
by one lengthscale, as it happens in the Ising model above
Tc. On the other hand, the very different kind of relaxation
(nonexponential for the point-to-set correlation function, ex-
ponential for the excess energy), and the fact that l is signifi-
cantly smaller than ξ , seem to suggest otherwise. We cannot
but leave the question open.

Finally, the Ising example calls for caution in the inter-
pretation of our results about the excess energy. The fact that
in a purely paramagnetic state one finds a behaviour of �E
vs. d so similar to the glass-forming case, means that a finite
�E is not by itself proof of the existence of a surface ten-
sion. This calls for a thorough investigation of the possible
entropic contribution to the glassy surface tension (which we
do not measure here).

ACKNOWLEDGMENTS

We warmly thank Giorgio Parisi for making us famil-
iar with the aspect ratio scaling technique. We also thank
Giulio Biroli and Chiara Cammarota for several important
discussions. T.S.G. thanks the Dipartimento di Fisica of the

Downloaded 04 Jan 2013 to 163.10.21.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



12A509-9 Gradenigo et al. J. Chem. Phys. 138, 12A509 (2013)

Sapienza Universitá di Roma and ISC (CNR, Rome) for hos-
pitality. The work of G.G. is supported by the “Granular-
Chaos” project, funded by Italian MIUR under the Grant No.
RBID08Z9JE. PV was partly supported by MICINN (Spain)
through Research Contract Nos. FIS2009-12648-C03-01 and
FIS2008-01323 (PV). T.S.G. was partially supported by
ANPCyT (Argentina).

1H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).
2M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
3E. Vidal-Russell and N. E. Israeloff, Nature (London) 408, 695
(2000).

4L. Berthier and J. P. Garrahan, J. Chem. Phys. 119, 4367 (2003).
5H. E. Castillo, C. Chamon, L. F. Cugliandolo, J. L. Iguain, and M. P. Ken-
nett, Phys. Rev. B 68, 134442 (2003).

6L. Berthier, Phys. Rev. Lett. 91, 055701 (2003).
7L. Berthier, Phys. Rev. E 69, 020201 (2004).
8H. Sillescu, R. Böhmer, G. Diezemann, and G. Hinze, J. Non-Cryst. Solids
307-310, 16 (2002).

9J. P. Garrahan and D. Chandler, Phys. Rev. Lett. 89, 035704 (2002).
10L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. E. Masri, D. L’Hôte,

F. Ladieu, and M. Pierno, Science 310, 1797 (2005).
11L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, and D. R.

Reichman, J. Chem. Phys. 126, 184503 (2007).
12L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, and D. R.

Reichman, J. Chem. Phys. 126, 184504 (2007).
13D. Kivelson, G. Tarjus, and S. A. Kivelson, Prog. Theor. Phys. Supp. 126,

289 (1997).
14A. Cavagna, T. S. Grigera, and P. Verrocchio, Phys. Rev. Lett. 98, 187801

(2007).
15A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys.

4, 711 (2008).
16H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nature Mater. 9,

324 (2010).
17D. Coslovich, Phys. Rev. E 83, 051505 (2011).
18P. Scheidler, W. Kob, K. Binder, and G. Parisi, Philos. Mag. B 82, 283

(2002).
19G. Biroli, J.-P. Bouchaud, A. Cavagna, T. S. Grigera, and P. Verrocchio,

Nat. Phys. 4, 771 (2008).
20L. Berthier and W. Kob, Phys. Rev. E 85, 011102 (2012).
21W. Kob, S. Roldán-Vargas, and L. Berthier, Nat. Phys. 8, 164 (2012).

22G. M. Hocky, T. E. Markland, and D. R. Reichman, Phys. Rev. Lett. 108,
225506 (2012).

23A. Montanari and G. Semerjian, J. Stat. Phys. 125, 23 (2006).
24E. Zarinelli and S. Franz, J. Stat. Mech.: Theory Exp. 2010, P04008.
25B. Bernu, J. P. Hansen, Y. Hiwatari, and G. Pastore, Phys. Rev. A 36, 4891

(1987).
26T. S. Grigera and G. Parisi, Phys. Rev. E 63, 045102 (2001).
27Y. Brumer and D. R. Reichman, Phys. Rev. E 69, 041202 (2004).
28T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. B 36, 8552 (1987).
29T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 37(10), 5342 (1988).
30J.-P. Bouchaud and G. Biroli, J. Chem. Phys. 121, 7347 (2004).
31C. Cammarota and G. Biroli, private communication (2012).
32C. Cammarota and G. Biroli, Proc. Natl. Acad. Sci. U.S.A. 109, 8850

(2012).
33J. Kurchan and D. Levine, J. Phys. A: Math. Theor. 44, 035001 (2011).
34C. Cammarota and G. Biroli, Europhys. Lett. 98, 36005 (2012).
35T. Kirkpatrick, D. Thirumalai, and P. Wolynes, Phys. Rev. A 40, 1045

(1989).
36S. Franz and G. Semerjian, “Analytical approaches to time- and length

scales in models of glasses,” in Dynamical Heterogeneities in Glasses,
Colloids, and Granular Media, edited by L. Berthier, G. Biroli, J.-P.
Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press,
2011); arXiv:1009.5248 [cond-mat.stat-mech].

37C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio,
J. Stat. Mech.: Theory Exp. 2009, L12002.

38C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio,
J. Chem. Phys. 131, 194901 (2009).

39C. Cammarota, A. Cavagna, I. Giardina, G. Gradenigo, T. S. Grigera, G.
Parisi, and P. Verrocchio, Phys. Rev. Lett. 105, 055703 (2010).

40A. Carter, A. Bray, and M. Moore, Phys. Rev. Lett. 88, 077201 (2002).
41A. Cavagna, T. S. Grigera, and P. Verrocchio, J. Chem. Phys. 136, 204502

(2012).
42K. Watanabe, T. Kawasaki, and H. Tanaka, Nature Mater. 10, 512 (2011).
43G. Szamel and E. Flenner, “Glassy dynamics of partially pinned fluids: an

alternative mode-coupling approach,” e-print arXiv:1204.6300.
44K. Kim, Europhys. Lett. 61, 790 (2003).
45C. Cammarota and A. Cavagna, J. Chem. Phys. 127, 214703 (2007).
46R. L. Jack and J. P. Garrahan, J. Chem. Phys. 123, 164508 (2005).
47R. L. Jack and L. Berthier, Phys. Rev. E 85, 021120 (2012).
48S. Karmakar and G. Parisi, e-print arXiv:1208.3181.
49C. Cammarota, G. Biroli, M. Tarzia, and G. Tarjus, Phys. Rev. Lett. 106,

115705 (2011).
50J. Yeo and M. A. Moore, Phys. Rev. B 85, 100405 (2012).

Downloaded 04 Jan 2013 to 163.10.21.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/S0022-3093(98)00831-X
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1038/35047037
http://dx.doi.org/10.1063/1.1593020
http://dx.doi.org/10.1103/PhysRevB.68.134442
http://dx.doi.org/10.1103/PhysRevLett.91.055701
http://dx.doi.org/10.1103/PhysRevE.69.020201
http://dx.doi.org/10.1016/S0022-3093(02)01435-7
http://dx.doi.org/10.1103/PhysRevLett.89.035704
http://dx.doi.org/10.1126/science.1120714
http://dx.doi.org/10.1063/1.2721554
http://dx.doi.org/10.1063/1.2721555
http://dx.doi.org/10.1143/PTPS.126.289
http://dx.doi.org/10.1103/PhysRevLett.98.187801
http://dx.doi.org/10.1038/nphys1025
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1103/PhysRevE.83.051505
http://dx.doi.org/10.1080/13642810208221307
http://dx.doi.org/10.1038/nphys1050
http://dx.doi.org/10.1103/PhysRevE.85.011102
http://dx.doi.org/10.1038/nphys2133
http://dx.doi.org/10.1103/PhysRevLett.108.225506
http://dx.doi.org/10.1007/s10955-006-9175-y
http://dx.doi.org/10.1088/1742-5468/2010/04/P04008
http://dx.doi.org/10.1103/PhysRevA.36.4891
http://dx.doi.org/10.1103/PhysRevE.63.045102
http://dx.doi.org/10.1103/PhysRevE.69.041202
http://dx.doi.org/10.1103/PhysRevB.36.8552
http://dx.doi.org/10.1103/PhysRevB.37.5342
http://dx.doi.org/10.1063/1.1796231
http://dx.doi.org/10.1073/pnas.1111582109
http://dx.doi.org/10.1088/1751-8113/44/3/035001
http://dx.doi.org/10.1209/0295-5075/98/36005
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://arxiv.org/abs/1009.5248
http://dx.doi.org/10.1088/1742-5468/2009/12/L12002
http://dx.doi.org/10.1063/1.3257739
http://dx.doi.org/10.1103/PhysRevLett.105.055703
http://dx.doi.org/10.1103/PhysRevLett.88.077201
http://dx.doi.org/10.1063/1.4720477
http://dx.doi.org/10.1038/nmat3034
http://arxiv.org/abs/1204.6300
http://dx.doi.org/10.1209/epl/i2003-00303-0
http://dx.doi.org/10.1063/1.2802449
http://dx.doi.org/10.1063/1.2075067
http://dx.doi.org/10.1103/PhysRevE.85.021120
http://arxiv.org/abs/1208.3181
http://dx.doi.org/10.1103/PhysRevLett.106.115705
http://dx.doi.org/10.1103/PhysRevB.85.100405

