1,387 research outputs found

    Bulges

    Full text link
    We model the evolution of the galactic bulge and of the bulges of a selected sample of external spiral galaxies, via the multiphase multizone evolution model. We address a few questions concerning the role of the bulges within galactic evolution schemes and the properties of bulge stellar populations. We provide solutions to the problems of chemical abundances and spectral indices, the two main observational constraints to bulge structure.Comment: 15 pages, 10 figures, to be published in MNRA

    Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    Full text link
    The specific mechanisms which leads to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2TiO_2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: irreversible sticking and size independent diffusion. Our model is able to reproduce the fractal dimensions and the area distributions of the nanostructures obtained in the experiments for different densities of the ablated material. The comparison of theory and experiment show that such fractal aggregates are formed after landing of the ablated material on the substrate surface by a diffusive mechanism. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.Comment: 21 page

    Effect of phase noise on useful quantum correlations in Bose Josephson junctions

    Full text link
    In a two-mode Bose Josephson junction the dynamics induced by a sudden quench of the tunnel amplitude leads to the periodic formation of entangled states. For instance, squeezed states are formed at short times and macroscopic superpositions of phase states at later times. The two modes of the junction can be viewed as the two arms of an interferometer; use of entangled states allows to perform atom interferometry beyond the classical limit. Decoherence due to the presence of noise degrades the quantum correlations between the atoms, thus reducing phase sensitivity of the interferometer. We consider the noise induced by stochastic fluctuations of the energies of the two modes of the junction. We analyze its effect on squeezed states and macroscopic superpositions and study quantitatively the amount of quantum correlations which can be used to enhance the phase sensitivity with respect to the classical limit. To this aim we compute the squeezing parameter and the quantum Fisher information during the quenched dynamics. For moderate noise intensities we show that these useful quantum correlations increase on time scales beyond the squeezing regime. This suggests multicomponent superpositions as interesting candidates for high-precision atom interferometry

    Noise in Bose Josephson junctions: Decoherence and phase relaxation

    Full text link
    Squeezed states and macroscopic superpositions of coherent states have been predicted to be generated dynamically in Bose Josephson junctions. We solve exactly the quantum dynamics of such a junction in the presence of a classical noise coupled to the population-imbalance number operator (phase noise), accounting for, for example, the experimentally relevant fluctuations of the magnetic field. We calculate the correction to the decay of the visibility induced by the noise in the non-Markovian regime. Furthermore, we predict that such a noise induces an anomalous rate of decoherence among the components of the macroscopic superpositions, which is independent of the total number of atoms, leading to potential interferometric applications.Comment: Fig 2 added; version accepted for publicatio

    Stochastic processes, galactic star formation, and chemical evolution. Effects of accretion, stripping, and collisions in multiphase multi-zone models

    Get PDF
    This paper reports simulations allowing for stochastic accretion and mass loss within closed and open systems modeled using a previously developed multi-population, multi-zone (halo, thick disk, thin disk) treatment. The star formation rate is computed as a function of time directly from the model equations and all chemical evolution is followed without instantaneous recycling. Several types of simulations are presented here: (1) a closed system with bursty mass loss from the halo to the thick disk, and from the thick to the thin disk, in separate events to the thin disk; (2) open systems with random environmental (extragalactic) accretion, e.g. by infall of high velocity clouds directly to the thin disk; (3) schematic open system single and multiple collision events and intracluster stripping. For the open models, the mass of the Galaxy has been explicitly tracked with time. We present the evolution of the star formation rate, metallicity histories, and concentrate on the light elements. We find a wide range of possible outcomes, including an explanation for variations in the Galactic D/H ratio, and highlight the problems for uniquely reconstructing star forming histories from contemporary abundance measurements.Comment: 12 pages, 12 Postscript figures, uses A&A style macros. Accepted for publication by Astronomy & Astrophysic
    • …
    corecore