489 research outputs found

    Dynamics of entanglement creation between two spins coupled to a chain

    Full text link
    We study the dynamics of entanglement between two spins which is created by the coupling to a common thermal reservoir. The reservoir is a spin-12\frac{1}{2} Ising transverse field chain thermally excited, the two defect spins couple to two spins of the chain which can be at a macroscopic distance. In the weak-coupling and low-temperature limit the spin chain is mapped onto a bath of linearly interacting oscillators using the Holstein-Primakoff transformation. We analyse the time evolution of the density matrix of the two defect spins for transient times and deduce the entanglement which is generated by the common reservoir. We discuss several scenarios for different initial states of the two spins and for varying distances.Comment: 16 pages, 5 figure

    Entangling two defects via a surrounding crystal

    Get PDF
    We theoretically show how two impurity defects in a crystalline structure can be entangled through coupling with the crystal. We demonstrate this with a harmonic chain of trapped ions in which two ions of a different species are embedded. Entanglement is found for sufficiently cold chains and for a certain class of initial, separable states of the defects. It results from the interplay between localized modes which involve the defects and the interposed ions, it is independent of the chain size, and decays slowly with the distance between the impurities. These dynamics can be observed in systems exhibiting spatial order, viable realizations are optical lattices, optomechanical systems, or cavity arrays in circuit QED.Comment: 5 pages, 5 figure

    Existence and equilibration of global weak solutions to Hookean-type bead-spring chain models for dilute polymers

    Full text link
    We show the existence of global-in-time weak solutions to a general class of coupled Hookean-type bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier-Stokes equations in a bounded domain in two or three space dimensions for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density function that satisfies a Fokker-Planck-type parabolic equation, a crucial feature of which is the presence of a center-of-mass diffusion term. We require no structural assumptions on the drag term in the Fokker-Planck equation; in particular, the drag term need not be corotational. With a square-integrable and divergence-free initial velocity datum for the Navier-Stokes equation and a nonnegative initial probability density function for the Fokker-Planck equation, which has finite relative entropy with respect to the Maxwellian of the model, we prove the existence of a global-in-time weak solution to the coupled Navier-Stokes-Fokker-Planck system. It is also shown that in the absence of a body force, the weak solution decays exponentially in time to the equilibrium solution, at a rate that is independent of the choice of the initial datum and of the centre-of-mass diffusion coefficient.Comment: 86 page

    Mid-Pleistocene and Holocene demographic fluctuation of Scots pine (Pinus sylvestris L.) in the Carpathian Mountains and the Pannonian Basin: Signs of historical expansions and contractions

    Get PDF
    Climate fluctuations of the Quaternary caused radical changes in distribution of tree species and resulted in large-scale range shifts, population contractions and expansions. Scots pine (Pinus sylvestris L.) a widely distributed conifer of the boreal regions underwent spatio-temporal changes, which shaped the modern-day genetic structure and phylogeographic pattern of the species. By applying independent approaches, including molecular genetic data and historical climate models we aimed to describe demography and past distribution patterns of Scots pine populations from the highly fragmented southern periphery, the Carpathians and the Pannonian Basin. We used Approximate Bayesian Computation (ABC) approach based on nuclear microsatellite markers (nSSRs) and Maximum Entropy distribution modelling (MaxEnt) with temperature- and precipitation-related bioclimatic data. ABC results indicated that from an ancestral Scots pine population two genetic lineages have diverged that in the Mid-Pleistocene due to the favourable climatic conditions underwent population expansion leading to an admixture event. The outcome of the hindcasting confirmed the expansion that leaded to the admixture event revealed by the ABC analysis. This can be dated to the Late Glacial period (14,160–11,800 yrs BP), in which widespread distribution of Scots pine in accordance with palynological proxies was detected. Predictions for the Mid-Holocene period have shown large-scale reduction in distribution of Scots pine and low probability of its occurrence, leading to disjunction and population fragmentation

    Expression of biomarkers (p53, transforming growth factor alpha, epidermal growth factor receptor, c-erbB-2/neu and the proliferative cell nuclear antigen) in oropharyngeal squamous cell carcinomas

    Get PDF
    Using immunohistochemistry, expression of p53, transforming growth factor-alpha (TGF-α), epidermal growth factor receptor (EGFR), c-erbB-2/neu and proliferating cell nuclear antigen (PCNA) was examined in 26 fresh frozen tissue specimens of oropharyngeal squamous cell carcinomas (SCCs). p53 gene mutations were examined by polymerase chain reaction (PCR)/DNA sequencing methods in 22 carcinomas. The findings were examined for correlations with patients’ clinicopathological parameters. Expressions of p53 and PCNA were also examined in 21 formalin-fixed corresponding tissues. Of the fresh frozen tissue specimens, 77% (20/26) showed expression and 68% (15/22) showed mutations (substitutions) of the p53, with significant clustering of the mutations in exons 5 (8/22; 36%), 7 (4/22; 18%) and 8 (5/22; 23%). No mutations were found in exon 6. There was a discordance between expression of p53 protein and mutations of the gene. Parallel to expression and mutations of the p53 found in most of the specimens, expression of TGF-α, EGFR, c-erbB-2/neu and PCNA was found in 88% (22/25), 92% (23/25), 58% (14/24) and 91% (21/23) of the specimens, respectively. For the formalin-fixed tissue specimens, 62% (13/21) and 90% (19/21) expressed p53 and PCNA, respectively. Examining for correlations with patients’ clinicopathological parameters, expression of p53, TGF-α, EGFR and c-erbB-2/neu seemed to negatively correlate with the increase of the tumour grade. The present work suggests that: (1) lack of negative growth regulation due to inactivation of the p53 gene together with activation of other proto-oncogenes are necessary genetic events in the carcinogenesis of oropharyngeal SCCs; (2) in oropharyngeal SCCs, p53 gene mutations were clustered in exons 5 (codons 130–186), 7 (codons 230–248) and 8 (codons 271–282) which perhaps suggests that tobacco carcinogens probably affect the mutational hot spots of the p53 gene at codons 157, 175, 186, 248, 273 and 282; and (3) fresh frozen and formalin-fixed tissue specimens give similar results when an immunohistochemical method is applied. The importance of p53, TGF-α, EGFR, c-erbB-2/neu and PCNA as biomarkers in oropharyngeal SCCs deserves particular attention because it might offer further understanding of the development of these carcinomas

    Serum creatinine and cystatin C provide conflicting evidence of acute kidney injury following acute ingestion of potassium permanganate and oxalic acid

    Get PDF
    AIM: Acute kidney injury (AKI) is common following deliberate self-poisoning with a combination washing powder containing oxalic acid (H2C2O4) and potassium permanganate (KMnO4). Early and rapid increases in serum creatinine (sCr) follow severe poisoning. We investigated the relationship of these increases with direct nephrotoxicity in an ongoing multicenter prospective cohort study in Sri Lanka exploring AKI following poisoning. METHODS: Multiple measures of change in kidney function were evaluated in 48 consenting patients who had serial sCr and serum cystatin C (sCysC) data available. RESULTS: Thirty-eight (38/48, 79%) patients developed AKI (AKIN criteria). Twenty-eight (58%) had AKIN stage 2 or 3. Initial increases in urine creatinine (uCr) excretion were followed by a substantial loss of renal function. The AKIN stage 2 and 3 (AKIN2/3) group had very rapid rises in sCr (a median of 118% at 24 h and by 400% at 72 h post ingestion). We excluded the possibility that the rapid rise resulted from the assay used or muscle damage. In contrast, the average sCysC increase was 65% by 72 h. CONCLUSIONS: In most AKI, sCysC increases to the same extent but more rapidly than sCr, as sCysC has a shorter half-life. This suggests either a reduction in Cystatin C production or, conversely, that the rapid early rise of sCr results from increased production of creatine and creatinine to meet energy demands following severe oxidative stress mediated by H2C2O4 and KMnO4. Increased early creatinine excretion supports the latter explanation, since creatinine excretion usually decreases transiently in AKIN2/3 from other causes.NHMRC Project grant 101177

    Estimating Remaining Carbon Budgets Using Temperature Responses Informed by CMIP6

    Get PDF
    A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which increases with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using a simple carbon cycle model and emulators of the temperature responses of the Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. Driving 41 CMIP6 emulators with 127 different emission scenarios for the 21st century, we find almost perfect linear relationship between maximum global surface air temperature and cumulative carbon emissions, allowing unambiguous estimates of RCB for each CMIP6 model. The range of these estimates over the model ensemble is a measure of the uncertainty in the RCB arising from the range in climate sensitivity over this ensemble, and it is suggested that observational constraints imposed on the transient climate response in the model ensemble can reduce uncertainty in RCB estimates
    corecore