13,281 research outputs found

    Bounded Verification with On-the-Fly Discrepancy Computation

    Get PDF
    Simulation-based verification algorithms can provide formal safety guarantees for nonlinear and hybrid systems. The previous algorithms rely on user provided model annotations called discrepancy function, which are crucial for computing reachtubes from simulations. In this paper, we eliminate this requirement by presenting an algorithm for computing piece-wise exponential discrepancy functions. The algorithm relies on computing local convergence or divergence rates of trajectories along a simulation using a coarse over-approximation of the reach set and bounding the maximal eigenvalue of the Jacobian over this over-approximation. The resulting discrepancy function preserves the soundness and the relative completeness of the verification algorithm. We also provide a coordinate transformation method to improve the local estimates for the convergence or divergence rates in practical examples. We extend the method to get the input-to-state discrepancy of nonlinear dynamical systems which can be used for compositional analysis. Our experiments show that the approach is effective in terms of running time for several benchmark problems, scales reasonably to larger dimensional systems, and compares favorably with respect to available tools for nonlinear models.Comment: 24 page

    Spatially configuring wrinkle pattern and multiscale surface evolution with structural confinement

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Surface elastic instabilities, such as wrinkling and creasing, can enable a convenient strategy to impart reversible patterned topography to a surface. Here the classic system of a stiff layer on a soft substrate is focused, which famously produces parallel harmonic wrinkles at modest uniaxial compression that period-double repeatedly at higher compressions and ultimately evolve into deep folds and creases. By introducing micrometer-scale planar Bravais lattice holes to spatially pattern the substrate, these instabilities are guided into a wide variety of different patterns, including wrinkling in parallel bands and star shape bands, and radically reduce the threshold compression. The experimental patterns and thresholds are enabled to understand by considering a simple plane-strain model for the patterned substrate-deformation, decorated by wrinkling on the stiff surface layer. The experiments also show localized wrinkle-crease transitions at modest compression, yielding a hierarchical surface with different generations of instability mixed together. By varying the geometrical inputs, control over the stepwise evolution of surface morphologies is demonstrated. These results demonstrate considerable control over both the patterns and threshold of the surface elastic instabilities, and have relevance to many emerging applications of morphing surfaces, including in wearable/flexible electronics, biomedical systems, and optical devices

    Automation and real-time control of urban wastewater systems: a review of the move towards sustainability

    Get PDF
    This is the author accepted manuscript. The final version is available from IWA Publishing via the DOI in this recordData availability statement: All relevant data are included in the paper or its Supplementary Information.Automation and real-time control have long been used in urban wastewater systems. However, there is a critical need to review how real-time control contributes to sustainable water management. This review provides a systematic review of the role of real-time control towards creating a sustainable wastewater system. This review identifies the social, economic and environmental pillars of sustainability that can be achieved using automation and control systems, considering individual systems and different scales of integration. Results obtained from a systematic literature review show that previous research on automation and control related to sustainability in the water sector focuses on addressing economic issues (mainly operational cost reduction) and improving the quality of the water environment, while the social pillar of sustainability is not addressed to a great deal. Integrated control is identified as a promising approach to address the three pillars of sustainability. Future research on automaton and real-time control in the water and wastewater system needs to explicitly demonstrate the contribution of control strategies towards the attributes of sustainability. To this end, regulatory bodies should focus on creating an overarching sustainability framework with indicators of sustainability clearly defined. Further, addressing three pillars of sustainability requires an integrated approach at a catchment scale where upstream and downstream processes are considered.Engineering and Physical Sciences Research Council (EPSRC)Royal SocietyAlan Turing Institut

    Mean first-passage times of non-Markovian random walkers in confinement

    Get PDF
    The first-passage time (FPT), defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role to quantify the efficiency of processes as varied as diffusion-limited reactions, target search processes or spreading of diseases. Most methods to determine the FPT properties in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects can not be neglected. Examples of non Markovian dynamics include single-file diffusion in narrow channels or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics \cite{turiv2013effect}, dense soft colloids or viscoelastic solution. Here, we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean FPT of a Gaussian non-Markovian random walker to a target point. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the trajectory of the random walker in the future of the first-passage event, which are shown to govern the FPT kinetics.This analysis is applicable to a broad range of stochastic processes, possibly correlated at long-times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes including the emblematic case of the Fractional Brownian Motion in one or higher dimensions. These results show, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.Comment: Submitted version. Supplementary Information can be found on the Nature website : http://www.nature.com/nature/journal/v534/n7607/full/nature18272.htm

    FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections

    Get PDF
    Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections

    When Models Interact with their Subjects: The Dynamics of Model Aware Systems

    Get PDF
    A scientific model need not be a passive and static descriptor of its subject. If the subject is affected by the model, the model must be updated to explain its affected subject. In this study, two models regarding the dynamics of model aware systems are presented. The first explores the behavior of "prediction seeking" (PSP) and "prediction avoiding" (PAP) populations under the influence of a model that describes them. The second explores the publishing behavior of a group of experimentalists coupled to a model by means of confirmation bias. It is found that model aware systems can exhibit convergent random or oscillatory behavior and display universal 1/f noise. A numerical simulation of the physical experimentalists is compared with actual publications of neutron life time and {\Lambda} mass measurements and is in good quantitative agreement.Comment: Accepted for publication in PLoS-ON

    Exploring the Simultaneous Effect of Total Ion Concentration and K:Ca:Mg Ratio of the Nutrient Solution on the Growth and Nutritional Value of Hydroponically Grown Cichorium spinosum L.

    Get PDF
    Nutrient-efficient plants and agricultural systems could tackle issues resulting from conventional agriculture. Spiny chicory (Cichorium spinosum L.), a very adaptive, wild edible vegetable, is gaining commercial interest as a functional food. Floating-raft hydroponics is a method commonly used for the commercial cultivation of leafy vegetables due to numerous advantages compared to soil cultivation. In this paper, the simultaneous effects of different potassium, calcium and magnesium ratios and different electrical conductivity (EC) levels on the growth and mineral composition of hydroponically grown C. spinosum were investigated. Four nutrient solutions (NS) were compared, two NS with low EC (L, 2.4 dS/m) and two with high EC (H, 3.6 dS/m) with K:Ca:Mg ratios of either 50:40:10 or 40:50:10. The results showed no interactions between the two factors. No significant effects were observed on the fresh and dry weight, leaf number and leaf area. High EC levels increased the K content and decreased the Mn and Zn content in the leaf tissues. The 40:50:10 ratio led to increased Ca content in plant tissues. The Nitrate-N was only affected by the EC level and was increased under H conditions, whereas the total-N was not affected

    Early magnesium reduction in advanced colorectal cancer patients treated with cetuximab plus irinotecan as predictive factor of efficacy and outcome

    Get PDF
    Introduction: Magnesium plays a role in a large number of cellular metabolic reactions. Cetuximab is able to induce hypomagnesemia by interfering with magnesium (Mg2+) transport in the kidney.We designed this trial to investigate if Mg2+ serum level modifications may be related with clinical response andoutcome in advancedcolorectal cancer patients during treatment with cetuximab plus irinotecan. Experimental Design: Sixty-eight heavily pretreatedmetastatic colorectal cancer patients were evaluatedfor Mg2+ serum levels at the following time points: before; 6 hours; and1, 7, 14, 21, 50, and92 days after the start of treatment. Results: Basal Mg2+ median levels were significantly decreased just 7 days after the first anticancer infusion and progressively decreased from the 7th day onward, reaching the highest significance at the last time point (P < 0.0001).Twenty-five patients showeda reduction in median Mg2+ circulating levels of at least 20% within the 3rdweek after the first infusion. Patients with this reduction showed a response rate of 64.0% versus 25.6% in the nonreduced Mg2+ group. The median time to progression was 6.0 versus 3.6 months in the reduced Mg2+ group andin that without reduction, respectively (P < 0.0001). Overall survival was longer in patients with Mg2+ reduction than in those without (10.7 versus 8.9 months). Conclusions: Our results confirm that cetuximab treatment may induce a reduction of Mg2+ circulating levels andoffer the first evidence that Mg2+ reduction may represent a new predictive factor of efficacy in advanced colorectal cancer patients treated with cetuximab plus irinoteca

    Grooming coercion and the post-conflict trading of social services in wild Barbary macaques

    Get PDF
    In animal and human societies, social services such as protection from predators are often exchanged between group members. The tactics that individuals display to obtain a service depend on its value and on differences between individuals in their capacity to aggressively obtain it. Here we analysed the exchange of valuable social services (i.e. grooming and relationship repair) in the aftermath of a conflict, in wild Barbary macaques (Macaca sylvanus). The relationship repair function of post-conflict affiliation (i.e. reconciliation) was apparent in the victim but not in the aggressor. Conversely, we found evidence for grooming coercion by the aggressor; when the victim failed to give grooming soon after a conflict they received renewed aggression from the aggressor. We argue that post-conflict affiliation between former opponents can be better described as a trading of social services rather than coercion alone, as both animals obtain some benefits (i.e. grooming for the aggressor and relationship repair for the victim). Our study is the first to test the importance of social coercion in the aftermath of a conflict. Differences in competitive abilities can affect the exchange of services and the occurrence of social coercion in animal societies. This may also help explain the variance between populations and species in their social behaviour and conflict management strategies
    • …
    corecore