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Abstract 9 

Automation and real-time control have long been used in urban wastewater systems. However, there is a 10 

critical need to review how real-time control contributes to sustainable water management. This review 11 

provides a systematic review of the role of real-time control towards creating a sustainable wastewater 12 

system. This review identifies the social, economic and environmental pillars of sustainability that can be 13 

achieved using automation and control systems, considering individual systems and different scales of 14 

integration. Results obtained from a systematic literature review show that previous research on automation 15 

and control related to sustainability in the water sector focuses on addressing economic issues (mainly 16 

operational cost reduction) and improving the quality of the water environment, while the social pillar of 17 

sustainability is not addressed to a great deal. Integrated control is identified as a promising approach to 18 

address the three pillars of sustainability. Future research on automaton and real-time control in the water 19 

and wastewater system needs to explicitly demonstrate the contribution of control strategies towards the 20 

attributes of sustainability. To this end, regulatory bodies should focus on creating an overarching 21 

sustainability framework with indicators of sustainability clearly defined. Further, addressing three pillars of 22 

sustainability requires an integrated approach at a catchment scale where upstream and downstream 23 

processes are considered.  24 

Key words:  Automation, integration, real-time control, sustainability, water system, urban wastewater 25 

system   26 

Highlights 27 

• This study provides critical analysis of the use of automation and real-time control in urban wastewater 28 

systems 29 

• Currently there is no clear path linking the benefits of automation to wastewater system stainability  30 

• Future study needs to explicitly demonstrate contributions of control strategies towards sustainability 31 

attributes 32 
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1 Introduction 1 

The concept of sustainability has been around since 1990s and used in different disciplines and contexts. 2 

Although there is no general consensus on its definition (Muga and Mihelcic, 2008), it is generally accepted 3 

that sustainability consists of three pillars: maintenance of economic wellbeing, protection and improvement 4 

of the environment, and improvement of social wellbeing both in the short and long terms (Butler et al., 5 

2014). However, when it comes to measuring sustainability it becomes more complicated, mainly in the 6 

definition of the scope of each pillar. For example, protection of the environment is limited to protection of 7 

the water quality in a context, but it extends further to ecosystems in another context. In the context of urban 8 

wastewater treatment, Sweetapple et al. (2015) pointed out that reducing operational energy use does not 9 

necessarily mean a sustainable approach without considering greenhouse gas emissions (GHG) such as 10 

nitrous oxide and methane. Although there is still work to be done in selecting sustainability indicators, there 11 

is a consensus that improved water and wastewater management is key in securing a sustainable 12 

development (Water, 2010).  13 

Automation and real-time control of water and wastewater systems can play a significant role in the journey 14 

towards sustainability. However, it is not uncommon to come across publications on automation and real-15 

time control that highlight their benefits from the point of meeting water quality legislation standards and 16 

reduction of costs through reduction of operational energy and chemical use. For example, Meng et al. 17 

(2016) showed how such approaches reduce energy use and thus impact on the water-environment. 18 

Similarly, Olsson (2007) identified several benefits of such approaches in the water and wastewater sector 19 

including reduction of energy use and improved biogas production in the wastewater sector (Liu et al., 20 

2004).  The benefits of automation and control of water systems were also demonstrated by Misiunas et al. 21 

(2005) and Lee et al. (2015). However, there is lack of a clear picture of how real-time control helps achieve 22 

sustainability and what indicators are generally considered in water and wastewater systems. This review 23 

aims to identify the latest advances in the literature in linking control strategy objectives with sustainability 24 

indicators.  25 

Many studies on automation and real-time control of the water system, however, did not feed themselves 26 

to the big objective of achieving sustainability and did not clearly demonstrate the contribution of their 27 

benefits towards sustainability. The lack of such an overarching objective can lead to segregated solutions 28 

which cannot be easily brought together to create a sustainable future. Sweetapple et al. (2015) and 29 

Mannina et al. (2019) are good examples in identifying and highlighting the risk of lacking such objectives. 30 

Sweetapple et al. (2015) showed the need for a specific analysis in the benefits of automation and real-31 

time control towards sustainability by highlighting contradicting objectives and the need for trade-offs, even 32 

within environmental sustainability. Mannina et al. (2019), with a focus on Decision Support Systems (DSS), 33 

discussed that lack of a DSS that integrates all the pillars of sustainability can be due to such segregated 34 

objectives.  35 



A key element in achieving an overarching goal of sustainability through automation and real-time control 1 

in urban water and wastewater management is the system boundary under consideration. Butler and 2 

Schütze (2005) and Olsson et al. (2005) evidently showed that the degree of achieving objectives of 3 

automation and real-time control is significantly determined by the scope or boundary of the system. For 4 

example, in urban wastewater systems, most studies focused on wastewater treatment plant (WWTP) wide 5 

process level control, e.g. Li and Zheng (2015) and De Gussem et al. (2014). They are either unit process 6 

controls with the objective to optimise the unit process within the WWTP, or they are plant wide process 7 

controls without the integration of other systems such as sewer networks. For example, plant wide control 8 

was done without considering the sewer network (Samuelsson, 2005; Sweetapple et al., 2014), and in most 9 

cases without considering the capacity of the receiving water (Wu and Luo, 2012; Hreiz et al., 2015). 10 

Similarly, automation and real-time control of sewer networks were widely tested without considering the 11 

WWTP (Cembrano et al., 2004; Lacour and Schütze, 2011). However, a more holistic approach was used 12 

integrate the sewer network, WWTP, and the receiving water (Ashagre, 2018; Saagi et al., 2016; Benedetti 13 

et al., 2013; Muschalla, 2008; Fu et al., 2008; Butler and Schütze, 2005). 14 

In the UK, Sustainable Drainage Systems (SuDS) have been investigated in the last several decades, and 15 

frameworks and guidelines have been developed for selection of sustainable options using sustainability 16 

indicators. Such approaches encourage a holistic view of management of the urban water and wastewater 17 

systems, but the work on automation and real-time control of existing systems is still ongoing. This review 18 

provides a critical review on the contributions of automation and real-time control strategies to the attributes 19 

of sustainability. It analyses previous studies with different scopes, systems and integration of systems in 20 

the application of control strategies. This review attempts to give a clearer picture of where the focus of 21 

previous studies on automation and real-time control of the urban water and wastewater system was and 22 

where the shift in the trend is, and perhaps where the focus should be in the future. The previous review 23 

papers, including Yuan et al. (2019), Mannina et al. (2018), (García et al., 2015) and Schütze et al. (2004) 24 

provided a detailed review on the state-of-the-art of system control and its application in urban water and 25 

wastewater systems. However, these reviews were not necessarily seen through the lenses of 26 

sustainability.  27 

To avoid complications in the review of studies on the automation and control of water and wastewater 28 

systems this study limits the scope of economic sustainability to any short term or long-term financial benefit 29 

to the public or to the industry. Regarding the social aspect of sustainability, the review does not go into the 30 

details of social indicators, rather it critically analyses studies that considered the benefits of society from 31 

any suggested real-time control strategy. Protection and improvement of the environment can be classified 32 

in three major areas; water availability, water quality and ecosystem, and reduction of GHG emissions. All 33 

these indicators focus on the water-environment except GHG emissions. These divisions are also reflected 34 

in regulations as well. For example, in the UK and most European countries, climate related regulations 35 

such as the Climate Change Act for Scotland (CC-Scotland-Act, 2009) sets an overall target of 42 % 36 



reduction in CO2 emission by 2020 and 80 % reduction in GHG emissions by 2050 against the 1990 1 

baseline which applies to the water and wastewater industry. The other regulation can be categorised as 2 

waster-environment regulations. Among others, the EU WFD, (2000/60/E), is the most influential water 3 

legislation produced by the European Commission, that focuses on the water environment (Ashagre, 2018). 4 

Hence, this review looks at environment sustainability from two angles; protection of the water-environment 5 

and reduction of GHG emissions. 6 

This paper is structured as below: Section 2 presents the fundamental concepts of control systems and 7 

discusses different types of control approaches and the variation in objectives. In section 3, the classes of 8 

sustainability indicators are introduced so as the systematic literature search on the role of automaton and 9 

real-time control of urban water and wastewater systems towards sustainability can be analysed and 10 

discussed systematically. Section 4 provides discussion based on the findings of the systematic literature 11 

review presented in Section 3. 12 

  13 



2 Overview of automation and real-time control 1 

2.1 Control strategies and control systems 2 

A control strategy describes the framework of the control system, i.e. how the  identified process units in a 3 

system are controlled using  measured information (Schütze et al. (2002a). We will use the term ‘control 4 

system’ in this review and it worth clarifying its specific definition. Distefano et al. (1997) defined ‘system’ 5 

as an arrangement or set of elements connected to form or act as an entirety, which is also adopted in this 6 

article. Control systems can be defined as the arrangement or connection of components (e.g. sensors, 7 

controllers, actuators and communication networks) in such a way that they regulate, direct or command 8 

themselves or another system to achieve certain objectives.  9 

For example, considering a dart player and her/his control process of the dart, the player can throw the dart 10 

without any pre-calculation and hit anywhere on the board. Alternatively, the player can judge the distance 11 

between him/her and the dart board and adjust the angle and the speed of throwing to hit the target point, 12 

showing a certain computation and arrangement to achieve the target. In the latter case, the input is the 13 

signal (location of the dart board and the dart itself) sent by the player’s eyes to his brain (eyes can be 14 

considered as sensors). The signal from the eyes goes to the brain where the control action is decided 15 

(controller), and the signal goes to the arm (the muscles on the arms are the actuators) to throw the dart 16 

to the intended location on the dart board. 17 

In the above example, the control system is one directional and there is no feedback to close the cycle 18 

since no control action can be taken based on the direction of the dart once it left the player’s hand. Such 19 

control systems are referred to open-loop or feedforward control systems. In feedforward control systems, 20 

the control action is based on expected output but is independent of actual output, i.e. no feedback-loop 21 

(Åström and Murray, 2010), see Figure 1.  22 

In a closed-loop system, commonly referred to as feedback control, the control action is dependent on the 23 

actual output, i.e. check output post-activity and adjust offsets accordingly (Figure 2). Take a closed-loop 24 

example of a girl picking up a cup, her arm and hand positions (outputs in this case) are continuously 25 

sensed by her eyes and position of arm continuously adjusted (output) using arm muscles (actuators). The 26 

continuous checking of inputs and/or outputs to adjust control variables concurrently is commonly termed 27 

as real-time control, active control or dynamic control. In water/wastewater systems processes are usually 28 

dynamic, and therefore the term control is associated with dynamically or actively regulating, adjusting or 29 

directing the system.   30 



 1 
Figure 1 Feedforward control system 2 

 3 

 4 
Figure 2 Closed-loop control (feedback control system) 5 

 6 

Feedforward control systems use early warnings by identifying potential disturbances and prevent any 7 

diversion from a targeted output. In wastewater systems, this necessarily requires monitoring and 8 

understanding pattern of flow and nutrient load coming into the WWTPs (Santín et al., 2015) or forecasting 9 

of rainfall to forecast sewer and river flow and quality (Yan et al., 2013; Jing et al., 2015). Hence, control 10 

systems can be setup with a fixed set-point without feedback or with an advanced feedback loop including 11 

a forecast system. The former is cheaper and easier to setup while the latter can be more complex and 12 

expensive but can help in improving system performance and reliability (Olsson and Newell, 1999; Lukasse, 13 

1999; Olsson et al., 2005; Olsson, 2012; Dirckx et al., 2011).  14 

2.2 The need for Control 15 

The driving force for the need of control is the exitance of disturbances and the need to handle them. 16 

However, the intended objective and expected outcome can be different. In most common cases, processes 17 

within a system are controlled for the following three reasons; reduce variability, increase efficiency, and 18 

ensure safety (Li and Zheng, 2015; Lindberg, 1997; Olsson and Newell, 1999; Schilling et al., 1996; Svrcek 19 

et al., 2014). Safety refers to the safety of the environment, staff on site, or the asset. Through efficiency 20 

one can achieve increased use of energy but might increase emissions of GHGs at a process level. 21 

Regarding safety, improving river water quality can increase environmental safety in their control design 22 

but may completely ignore the impact of their control design on GHG emissions. Hence the need for system 23 

control requires a specific objective and some of the common situations that control systems were 24 

developed in the past are listed below:  25 

Controller 

Actuating 

Signal 
Manipulated 

variable 

Effect of disturbance 

Controlled system 
Input 

Disturbance 

Controlled 

output 

Controller 

Actuating 
Signal 

Manipulated 
variable 

Feedback Elements 

Controlled system 

 Feedback 
Signal 

Reference 
input 

Disturbance 
Controlled 

output 

Feedback path 

Forward path 



• The need to reduce the impact of disturbances within the system such as variations of inflows in 1 

WWTP, and pressure management in water distribution networks. 2 

• Systems to cope with the increased load, for example high demand in water distribution systems 3 

or high nutrient load to WWTPs due to increased urbanisation or industrialisation. 4 

• The need to increase system capacity using resource use efficiency; for example, the need for 5 

WWTPs capacity due to increased load or tighter regulation. 6 

• Protection of the environment, this may include the reduction of GHG emissions from WWTP or 7 

maintain desired effluent quality to protect the water-environment. 8 

• Protect assets from acute failure and reduce deterioration which are the key characteristics of a 9 

sustainable and resilient system. 10 

• Reliable service with a consistent and high quality of output, for example, ensuring consistent 11 

effluent quality. 12 

• Reduction of capital investment and operational cost 13 

• Increasing system efficiency through reduction of operational energy consumption 14 

• Monitoring and diagnosing 15 

2.3 Performance Goals and Objectives: 16 

The main goals of system automation and control include maximising efficiency, purely economic benefit, 17 

improving the water-environment and so on. Olsson and Newell (1999) referred to them as 18 

community/societal goals which should not be confused with the social element of sustainability. Societal 19 

goals are met by specific goals at a system level or a process scale, Figure 3, usually referred to as a 20 

process goals (Olsson and Newell, 1999; Schütze et al., 2004). Process goals, for example in wastewater, 21 

can be meeting effluent quality requirements, reduce dry weather spills to receiving water bodies, system 22 

optimisation to reduce cost, minimise control actions (Ocampo-Martinez, 2010).  Olsson and Newell (1999); 23 

Schütze et al. (2002b) manifested that the process goal can be even more specific, referred to as 24 

operational objectives, and designed so that a specific treatment plant can meet the plant or process goals. 25 

A water utility can have the same plant or process goal for several WWTPs, but this goal might be achieved 26 

through different operational objectives based on site conditions and schemes.   27 

 28 

Figure 3 Interlinks between different goals and objectives that drives control designs of water and 29 
wastewater systems (based on Olsson and Newell (1999)) 30 
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2.4 Real-time Control and Integrated Real-time control: 1 

In addition to the type of control system, the structure of control systems plays a key role both in ensuring 2 

an overall system reliability and achieving wider or multiple objectives. For example, real-time control is a 3 

type of control where continuous checking of inputs and/or outputs are performed to adjust control variables 4 

concurrently and commonly used on a unit process or single system basis (Schütze et al., 2004). However, 5 

integrated real-time control (or active control) refers to the application of real-time control to two or more 6 

systems where the information from one system is used to control another system or to achieve the 7 

objective defined in another system. Hence, integrated real-time control approach can have a single or 8 

multiple objective with a capacity in delivering a wider goal (societal goals) than the real-time control 9 

approach objectives (plant wide or process-based goals). 10 

The scope of an integrated approach is variable, and the boundaries are not always clear.  integrated urban 11 

water and wastewater system management is a catchment scale approach that covers both wastewater 12 

systems, water supply systems, water resources (receiving water bodies), or the wider river basin 13 

processes. ‘Urban area’ in this study is equivalent to ‘agglomeration’ as defined in CEC (1991); it is an area 14 

where the population is sufficiently concentrated so that urban wastewater can be collected through a sewer 15 

network and conveyed to the wastewater treatment plant. The appropriately treated wastewater from the 16 

wastewater treatment plant (WWTP) is discharged to the receiving water. Integrated urban wastewater 17 

system refers to the integration of at least the three systems, the sewer network, the wastewater treatment, 18 

and the receiving water(Schütze et al., 2002a), shown in Figure 4. 19 

 20 
Figure 4 Interlinks among the main components of a typical urban water and wastewater system. The 21 

dotted line showing the boundary of an urban wastewater system 22 

Integrated control of urban wastewater system presents opportunities both in design and operation of the 23 

system with different objectives (Benedetti et al., 2013; Vanrolleghem et al., 2005). However, the objectives 24 

can be different and the resulting degree of complexity as well.  25 
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3 The role of automation and control in water and wastewater systems 1 

This section will look into the role of automation and control in the water and wastewater system from the 2 

perspective of sustainability. System configuration and control structures, especially system boundaries 3 

and level of integration, can play a key role in the development of more sustainable systems. The 4 

following sections look into this aspect in more detail. 5 

3.1 Classes of sustainability 6 

The relationships between the environmental, economic and social aspects of sustainability are shown in 7 

Figure 5. The indicators for each aspect are discussed below. Environmental sustainability in urban 8 

water/wastewater systems can be measured using energy consumption, GHG emissions, degradation of 9 

water and soil resources (loss of nutrients and waste production), and overflow  volume and frequencies 10 

(Muga and Mihelcic, 2008; Fagan et al., 2010).  11 

 12 

Figure 5 Classes of sustainability indicators 13 

From the point of installing or selection of control systems, economical sustainability implies comparing the 14 

costs and economic benefits of implementation of the options (Balkema et al., 2002). However, several 15 

studies considered the reduction of operational cost as a sustainability indicator without cost benefit 16 

analysis (Bongards et al., 2005; Brdys et al., 2008). Casal-Campos et al. (2015) presented the regret-based 17 

approach where the cost of doing nothing or economic loss in adopting option A instead of option B is used 18 

to assess the economic feasibility of sustainable options from the point of system robustness and reliability. 19 

Although this review is not focusing on the method of costing or economic feasibility, it is important to 20 

acknowledge that economic sustainability has been calculated in different ways based on the context of 21 

study.  22 

Systems can be said that they assure societal sustainability if they consider interests and benefits of the 23 

public. In selecting appropriate technologies and control strategies, Muga and Mihelcic (2008) gave a 24 

detailed lists of the social indicators of sustainability. This includes local area aesthetic values, social 25 
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acceptance, compliance with institutional requirements (which is a loose terminology that can vary 1 

significantly in different contexts), and economic benefit to local community. In the study of McClymont et 2 

al. (2020) that focuses on sustainable drainage systems, societal benefits of systems or management 3 

options are measured based on contributions towards social wellbeing, which include metal wellbeing, 4 

aesthetics and improved social interactions. 5 

It was found important to sub-classify environmental sustainability from the point of mitigation of climate 6 

change specifically reduction in GHG emissions and the water environment. Both sub-classes have several 7 

indicators by themselves but due to the fundamental objective difference and since these objectives are 8 

driven by different (in some cases, contradictory) legislations (which is the case in most European 9 

countries), it is important to look at them separately (Water, 2011; Sweetapple et al., 2015; Ashagre, 2018). 10 

3.2 Systematic review of the literature on automation and real-time control from 11 

the perspective of sustainability 12 

Without going into further details on how these indicators of sustainability are calculated a systematic 13 

literature review is done to identify the role and trends in the use of automation and real-time control of 14 

water/wastewater systems. The large interdisciplinary abstract and citation database Scopus from Elsevier 15 

was chosen due to its strengths in science and technology and higher number of journals since 1996 16 

(Bakkalbasi et al., 2006). In the database search, the following word combinations were used in Article Title, 17 

Abstract and Keywords, to identify publications in this area. 18 

• Artificial intelligence OR AI OR  19 

• automation and control OR 20 

• real-time control OR  21 

• optimisation AND (including optimization) 22 

• wastewater OR  23 

• reclaimed water OR  24 

• recycled water OR  25 

• UWWS OR  26 

• WWTP OR  27 

• sewer network AND  28 

• sustainability OR sustainable 29 

The above search returned 166 publications. There is a clear increase in articles published in this area of 30 

research especially since 2009 (Figure 6). Although the trend in increase is observed, there are some years 31 

with a significantly higher number of publications such as the years 2011, 2013 and 2014. The spike in 32 

2011 is mainly due to publications from the World Environmental and Water Resources Congress 2011, 33 

which focuses its topics towards sustainability. Unlike the 2011 spike, the increase in number of publications 34 

in the year 2013 and 2014 is not driven by one specific conference. Instead, there is a general increase in 35 

publication both in journal and conference papers.  36 



 1 

Figure 6 Literature search counts based on year of publication 2 

 3 

The search was narrowed further by selecting only peer reviewed journal articles and book chapters, 4 

resulting in 102 publications. Out of these, 57 publications are out of scope for several reasons including: 5 

i. The focus is more on management rather than automation or real-time control (Hollingum, 6 

1998; Baron et al., 2016; Gruiz et al., 2017; Wolfe and Richard, 2017; Maurya et al., 2018; 7 

Zhao et al., 2019; Ullah et al., 2020). 8 

ii. Comparison of new technologies or method of management (Shoji et al., 2008; Bottero et al., 9 

2011; Molinos-Senante et al., 2012; Woods et al., 2013; Bartrolí et al., 2013; Ahmadi et al., 10 

2017; Bertanza et al., 2018; Wen et al., 2020). 11 

iii. Main focus is on agricultural practices (Ekasingh and Ngamsomsuke, 2009; Benami et al., 12 

2013; Jeong et al., 2014).  13 

iv. Water scarcity management without considering automation or real-time control (Thomas et 14 

al., 2011; Shadman, 2013; Yang et al., 2015; Singh et al., 2015). 15 

v. Focuses on alternative sources of energy without a clear focus on system automation or real-16 

time control (Yuan et al., 2013; Gu et al., 2018; Niknejad et al., 2018). 17 

3.3 The role of system boundaries and level of integration on sustainability 18 

Focusing only on those publications which are within the scope of this review (control strategies from the 19 

point of view of sustainability, see Section 3.2), 45 publications are identified. The scope of the studies 20 

identified varies from automation and control of a unit process within a system to a different scale of 21 

integration. The integration scale varies a lot with only two studies used an integrated approach to consider 22 

sewer network and water networks in a holistic way (Table 1). Most of the studies on automation and real-23 

time control identified in this search focus on integrating WWTP and receiving rivers. However, there is an 24 

increasing trend in integrated approach studies that aim to bring WWTP, sewer network and receiving rivers 25 

together, although objectives or indicators of sustainability vary widely (Table 1).  26 
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No publications were found considering only sewer network and WWTP without considering the receiving 1 

river. This is mainly because river water quality is stringently regulated, wastewater systems should be 2 

operated directly to meet the regulatory compliances rather than effluent-based criteria (Meng et al., 2016; 3 

Meng et al., 2017). All the publications found in this search focusing on sewer networks and river, without 4 

exception, all focuses on cost saving and improving quality of the water environment mainly through the 5 

reduction of combined sewer overflows. Only two publications identified to bridge the sewer network 6 

management and water distribution network or water supply management using real-time control. 7 

Perhaps due to the nature of the system, there is a lack of publications that used real-time control in water 8 

treatment plants and established a clear path towards sustainability. However, more studies were identified 9 

with a focus only at WWTP, showing link to the sustainability indicators. Most of them address the cost 10 

saving (economy) aspect of sustainability and protection of the water-environment through the attempt in 11 

achieving the fixed effluent quality standards set in regulations. Most of the studies considering the 12 

automation of WWTP are limited to the use of unit process control and limit their objectives in the stabilising 13 

of effluent concentration without considering assimilative capacity of the river except the studies by Meng 14 

et al. (2020); Ashagre (2018); Meng et al. (2017). Although some of these studies do not consider the state 15 

of the receiving river, real-time control plays a role in protecting the environment through achieving effluent 16 

pollutant concentration as stated in regulatory pollutant limits. As a result, almost all the studies with this 17 

scope are limited to economic and water-environment sustainability indicators.  18 

In this review, the catchment scale real-time and automation system should at least consider the three 19 

elements; WWTP, the sewer network and the receiving water body (Butler and Schütze, 2005; Erbe and 20 

Schütze, 2005; Brdys et al., 2008; Bai et al., 2019). However, some studies consider water distribution, 21 

water resources systems to automate and control the water and wastewater sector (Beck, 2005; Zoltay et 22 

al., 2010; Pinto et al., 2014). 33 % of the literature is found to address sustainability using an integrated 23 

approach. However, due to the scope of studies and system boundaries, the sustainability indicators 24 

considered through an integrated approach vary significantly, from considering only the environment 25 

towards the most aggregated or three-dimensional sustainability indicators. For example, without 26 

considering sustainability, the integrated control approach presented in Meirlaen et al. (2002); 27 

Vanrolleghem et al. (2005), has been adopted and applied by many researchers. However, it is common 28 

that multiple objectives are considered while using integrated real-time control approaches (Butler and 29 

Schütze, 2005; Fu et al., 2008). 30 

  31 



Table 1: Publication distributions over different aspects of sustainability 1 

Class of 
sustainability 

Figure 5/ Scope 
Integrated 
approach 

Sewer 
and 

Water 
Network 

Sewer 
network - 

River WTP WWT WWTP WWTP - River 

a 

Water-
Environment 

Beck (2005), 
Suner Roqueta 

et al. (2005), 
Erbe and 

Schütze (2005), 
Bai et al. (2019)  

Srinivas 
and 
Singh 
(2018) 

- - - - - 

Water-
Environment - 
GHG-
Environment 

- - - - - 
Garrido-Baserba 

et al. (2014) 

- 

GHG-
Environment 

-  - - - - - 

b Economy - - - 
Chung and 

Lansey 
(2008) 

- 
Frombo et al. 

(2009), Conrad 
et al. (2010) 

- 

c Social - - - - - - - 

b/a 

Economy - 
Water-
Environment - 
GHG-
Environment 

- - - - - - 

Flores-Alsina et al. 
(2011)  

Economy - 
Water-
Environment 

Pintér et al. 
(1995), Butler 
and Schütze 

(2005), Brdys et 
al. (2008) 

- 

Ellis and 
Marsalek 

(1996), 
Campisano et 

al. (2013), 
Sousa et al. 

(2014), Bartos 
et al. (2018), 

Rose et al. 
(2020)  

- 

Zhang et 
al. 

(2013) 

Puchongkawarin 
et al. (2015), 

Verdaguer et al. 
(2016), Chen et 

al. (2018), Webb 
et al. (2018), Su 

et al. (2019), 
Bhagat et al. 

(2020) 

Bongards et al. 
(2005), Van Hulle et 
al. (2006),Guo et al. 
(2009), Thornton et 

al. (2010), Lee et al. 
(2013), Gruiz and 
Fenyvesi (2017), 

Gaida et al. (2017), 
Man et al. (2019), 
Pang et al. (2019)   

Economy – 
GHG-
Environment  

- - - - - - - 

b/c 
Economy – 
Social 

- - - Galelli et 
al. (2014) 

- - - 

a/c 
Environment - 
Social 

- - - - - - - 

a/b/c 

Economy - 
Water-
Environment - 
GHG-
Environment - 
Social 

Herva and Roca 
(2013), 

Chamberlain et 
al. (2013), 

Chhipi-Shrestha 
et al. (2017), 

Mannina et al. 
(2019)  

- - - - - - 

Economy - 
Water-
Environment - 
Social 

Zoltay et al. 
(2010), Du 

Plessis (2014), 
Pinto et al. 

(2014), 
Hadjimichael et 

al. (2016)  

Valentin 
et al. 

(2016), 
Boulos 
(2017) 

- - - - - 
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  1 
Figure 7 Relevant literature search results (journal articles and book chapters) demonstrated automation 2 

and control to the attributes of sustainability 3 

Those studies with a societal objective such as sustainability or meeting regulatory standards as presented 4 

by Olsson et al. (2005), showed the ability to meet at least two of the sustainability classes. The same is 5 

observed for control strategies designed at a system level. However, publications that uses control 6 

strategies at one system level (for example, WWTP without integration of the receiving water bodies) are 7 

limited to meeting a maximum of two sustainability classes, mainly economy and environment. 8 

There aren’t many researches out there only focusing on just the economy aspect of sustainability using 9 

real-time control since the water industry is closely related to the environment. Those identified focus on 10 

one system only, either WWT or WWTP, see Table 1 class b. Their focus was optimisation of a system to 11 

reduce operational energy without giving clear emphasis on the environment. Similarly, there is only one 12 

study identified looking both at the economy and social aspects of sustainability. Galelli et al. (2014) applied 13 

the concept of real-time control in the optimisation of urban water reservoirs from the point of system 14 

efficiency and water resource management.  15 

Most of the researches provided a clear consideration of economy and protection of the water environment, 16 

Figure 7.  53 % of the research in automation and real-time control addresses the economy and water-17 

environment aspects of sustainability; 38 % of them focusing on automation of the WWTP considering the 18 

receiving river.  19 

The search showed only 2 % of the publications in automation and real-time control strategy focuses on 20 

economy, water-environment, and reduction of GHG emissions with a clear link to sustainability. Studies 21 

such as Sweetapple et al. (2014) focus on these objectives mainly GHG emissions but there were no 22 
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Indicators of sustainability considered in the study

Literature search results on sustainablity and 
automation and control of wastewater systems



attempt to demonstrate the contributions of the results towards sustainability although a solid discussion is 1 

presented mainly on the environmental sustainability later in Sweetapple et al. (2015). The only scope found 2 

to address both environmental (both water and GHG emission) and social is through an integrated 3 

approach. Some studies such as Valentin et al. (2016) and Boulos (2017) showed that a three dimensional 4 

sustainability indicators (without the consideration of GHG emissions) can be achieved through integrating 5 

only the sewer networks and water supply systems.  6 

A few studies did not appear in this literature search but clearly showed the benefits of automation and real-7 

time control in the water/wastewater systems. For example, Campos et al. (2016); Sweetapple et al. (2014) 8 

and Caniani et al. (2015) looked at reduction of GHG, Dirckx et al. (2011); Meng et al. (2017); Zhang et al. 9 

(2008); De Gussem et al. (2014) showed an optimal reduction of GHG and cost through energy saving, Fu 10 

et al. (2008); Meng et al. (2020); Meng et al. (2017); Reußner et al. (2009); Muschalla (2008); Butler and 11 

Schütze (2005); (Schütze et al., 2002b) focused on an integrated real-time control of water/wastewater 12 

systems. They did not appear in this literature search mainly due to their benefit towards sustainability was 13 

not specifically demonstrated. This indicates: 14 

1) the need for publications in this topic to map their benefits against the classes and indicators of 15 

sustainability 16 

2) the limitation of the method used in this study.  17 



4 Discussion 1 

Future demand for integrated real-time control of the water systems is expected to increase due to stricter 2 

regulations, the need for higher efficiency to mitigate climate change, reduction of operational cost, 3 

equalisation of peak flow and pollutant load to effectively use spare capacity (Schütze et al., 2002a; 4 

Astaraie-Imani et al., 2012). Water utilities have started to incorporate WWTP models in decision making, 5 

process control, and optimisation (UKWIR (2013). the potential of advanced control systems to save 6 

energy, chemical usage, and greenhouse gas emissions will be increasingly materialised in practice,.  7 

However, regulations such as the EU Water Framework Directive (WFD) require a holistic approach to 8 

improve the status of water bodies which is a major driver to look at wastewater systems as an integrated 9 

system and broaden objectives beyond meeting effluent quality standards (Rauch et al., 1998; Fu et al., 10 

2008). The scale of integration and the objectives that are assessed so far in the literature vary significantly. 11 

On the one hand, Langeveld et al. (2002) clearly showed the necessity of an integrated approach to assess 12 

sewer systems and WWTPs as an integral unit but not emphasise the need of integrating the receiving 13 

water. On the other hand, Benedetti et al. (2007) focused on integrating only the WWTP and the receiving 14 

river. Erbe and Schütze (2005) presented an integrated approach that allows a holistic pollution-based 15 

control of the drainage system as a function of state variables in the WWTP and the receiving water but 16 

focusing mainly on managing the drainage network. In contrast, Meirlaen et al. (2002) integrated the three 17 

subsystems (urban drainage network, WWTP, and receiving water) and used the river’s ammonia 18 

concentration to influence the total flow to the WWTP without influencing processes within the WWTP. 19 

Integrated approaches commonly focus on a single urban wastewater system (UWWS) and often ignore 20 

the water treatment system and other WWTPs within a hydrologic catchment. These approaches focus at 21 

managing the urban wastewater system regardless of what is going on in the upstream or downstream of 22 

the catchment. If the objective is to achieve a ‘good’ water environment quality, reducing GHG emissions, 23 

creating an efficient system with reduced energy use and cost, and with societal benefit it is key to widen 24 

the scope of management from a single UWWS scale to a hydrologic catchment scale, where activities 25 

upstream and downstream urban conglomerates can be put into consideration.  26 

For urban wastewater systems at a catchment scale as shown in Figure 8, it is possible to develop 27 

integrated pollution management considering both diffuse and point sources and achieve a three-28 

dimensional sustainable pathway. For example, Dickinson (2018) suggested  when the ammonia 29 

concertation in the river upstream of the WWTP is already above the ammonia limit for the river, the 30 

catchment scale approach should be used for the river to achieve a ‘good’ status. Further, river quality-31 

based control approaches and policies should be developed to utilise the capacity of receiving rivers and 32 

water resources (Meng et al., 2017; Meng et al., 2020).  33 



 1 
Figure 8 Scope of catchment scale management of UWWSs 2 

5 Conclusions 3 

This review provided a critical analysis of the use of automation and real-time control in water and 4 

wastewater systems, with a focus on achieving economic and environmental sustainability. The presented 5 

literature showed that automation and real-time control approaches play a key role in sustainable 6 

management of water and wastewater systems. However, there is no clear path and direction in linking the 7 

benefits of these approaches to sustainability indicators. The review showed that there is a need for a 8 

structured approach to link these benefits to sustainability indicators in order to support decision making 9 

processes. The review also identified that the research in the area of reduction of GHG emissions is still 10 

limited and more work is required not only to quantify this benefit but also their contribution towards each 11 

class of sustainability indicators. Most studies considered efficiency of energy use and had their emphasis 12 

on the reduction of operational cost and meeting regulatory requirements but seemed to overlook the 13 

advantage of their approach in the reduction of GHG emissions. In addition, adopting an integrated 14 

approach in managing wastewater systems is crucial in order to achieve a three-dimensional sustainability 15 

pathway. Further, a deeper exploration in the use of an integrated approach with an objective of achieving 16 

a three-dimensional sustainability is required to reinforce this path. Future work on automaton and real-time 17 

control in the water and wastewater needs to explicitly demonstrate the contribution of their control 18 

strategies towards the attributes of sustainability. In most of the work reviewed the control objective was 19 

driven by regulatory standards, indicting the crucial role of regulations. Hence, regulatory bodies should 20 

focus on creating an overarching sustainability framework with indicators of sustainability clearly defined. 21 
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