260 research outputs found

    Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

    Get PDF
    Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials

    Thermoelectric Performance of various Benzo-difuran Wires

    Full text link
    Using a first principles approach to electron transport, we calculate the electrical and thermoelectrical transport properties of a series of molecular wires containing benzo-difuran subunits. We demonstrate that the side groups introduce Fano resonances, the energy of which is changing with the electronegativity of selected atoms in it. We also study the relative effect of single, double or triple bonds along the molecular backbone and find that single bonds yield the highest thermopower, approximately 22μ\muV/K at room temperature, which is comparable with the highest measured values for single-molecule thermopower reported to date.Comment: 7 pages, 8 figure

    Uniform tiling with electrical resistors

    Get PDF
    The electric resistance between two arbitrary nodes on any infinite lattice structure of resistors that is a periodic tiling of space is obtained. Our general approach is based on the lattice Green's function of the Laplacian matrix associated with the network. We present several non-trivial examples to show how efficient our method is. Deriving explicit resistance formulas it is shown that the Kagom\'e, the diced and the decorated lattice can be mapped to the triangular and square lattice of resistors. Our work can be extended to the random walk problem or to electron dynamics in condensed matter physics.Comment: 22 pages, 14 figure

    Correlations of electrons from heavy flavor decay in p+p, d+Au and Au+Au collisions

    Get PDF
    In relativistic heavy ion collisions heavy flavor probes are crucial to understand the interactions between partons and the produced hot nuclear matter. Measurements in p+p collisions provide information about how the heavy quarks are produced and fragment and in d+Au collisions are sensitive to possible effects from cold nuclear matter. Azimuthal correlation measurements involving heavy flavor probes are complementary to single particle spectra measurements and provide additional information about production and interactions of heavy quarks. Measurements of electrons with heavy flavor decay with other hadrons from the event can provide information about how the heavy quark interacts with the produced matter and can be compared to similar measurements from light hadron correlations. Correlations between electrons from heavy flavor decay with muons, also from heavy flavor decay, can provide further information about heavy flavor production and cold nuclear matter effects in d+Au collisions with a very clean signal. We present PHENIX results for electron-hadron correlations in p+p and Au+Au collisions and electron-muon correlations in p+p and d+Au collisions and discuss the implications of these measurements
    corecore