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Abstract.

The electric resistance between two arbitrary nodes on any infinite lattice structure

of resistors that is a periodic tiling of space is obtained. Our general approach is based

on the lattice Green’s function of the Laplacian matrix associated with the network.

We present several non-trivial examples to show how efficient our method is. Deriving

explicit resistance formulas it is shown that the Kagomé, the diced and the decorated

lattice can be mapped to the triangular and square lattice of resistors. Our work can

be extended to the random walk problem or to electron dynamics in condensed matter

physics.
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1. Introduction

In electric circuit theory one of the classic problems is to calculate the resistance between

two arbitrary grid points on an infinite square lattice of identical resistors. This problem

has been published by van der Pol and Bremmer [1]. In a special case, it is well known

that the resistance between two adjacent grid points of an infinite square lattice is half

the resistance of a bond, and an elegant and elementary solution of the problem is given

by Aitchison [2]. Over many years numerous authors have studied this problem and its

extension to triangular, honeycomb and hypercube lattices (for some relevant references

see, eg, [3, 4, 5]).

The resistor network can systematically be treated by the Laplacian operator of the

difference equations governed by Ohm’s and Kirchhoff’s laws. Then the Green’s function

corresponding to the discrete Laplacian operator can be related to the resistance between

two arbitrary nodes on a resistor network. This idea has been applied by Kirkpatrick

to study percolating networks of resistors [6]. Recently, it has been demonstrated that

the application of the Green’s function is a very efficient way to find the resistance of

an infinite resistor network as well [5]. The concept of a Green’s function is widely used

in the literature. Economou’s book [7] gives an excellent introduction to the Green’s

function. Katsura et. al. have a review of the lattice Green’s function [8] and for more

works on this topic, see references in [5]. From the equation for the Green’s function one

can, in principle, derive some recurrence formulas for the resistances between arbitrary

grid points of an infinite lattice (for square lattice of resistor network see reference [5]).

The Green’s function can also be a useful tool to study, eg, capacitor networks [9] or the

resistance in a perturbed lattice in which one of the bonds is missing in the lattice [10].

The Green’s function for the anisotropic diamond lattice was discussed by Hijjawi [11]

and the analytical properties of the Green’s function in all dimensions were investigated

by Guttmann [12].

The problem of a finite resistor network is equally interesting in circuit theory.

Recently, Wu has developed a theory to calculate the resistance between arbitrary nodes

for a finite lattice of resistors [13], Tzeng and Wu for impedance networks [14]. The

corner-to-corner resistance and its asymptotic expansion for free boundary conditions

were obtained by Essam and Wu [15] and for other boundary conditions the latter was

calculated by Izmailian and Huang [16].

Calculation of the resistance in electric circuit theory can also be relevant to many

other problems, such as random walks [17, 18] and first-passage processes [19]. This

connection is based on the fact that the difference equations for the electrical potentials

on a lattice point of a resistor network is the same as those that occur in the above

mentioned problems. Thus the resistance problem can be regarded as a problem to

solve the difference equations for an infinite network.

In this work we generalize the Green’s function approach developed in reference [5]

for a resistor network that is a uniform tiling of d dimensional space with electrical

resistors. In two dimensions, tiling is a collection of plane figures that fills the plane



Uniform tiling with electrical resistors 3

with no overlaps and no gaps. Generalization to other dimensions is also possible.

Figure 1 shows an example for a uniform tiling with resistors. Here we derive an

Figure 1. An example for a lattice structure of infinite resistor networks discussed in

this work. The lattice is a periodic tiling of the plane by squares and octagons. Here,

all lines represent a resistor with resistance R.

explicit expression for the resistance between two arbitrary nodes of any lattice structure

which is a periodic tiling of d dimensional space with electrical resistors. We present

several examples of nontrivial resistor networks that, to our knowledge, have not been

studied in the literature. Our Green’s function method enables us to derive, for the

first time, resistance formulas for the Kagomé and dice lattices (see sections 3.3 and

3.4), and for the decorated lattice (see section 3.5) in terms of the resistances on the

well studied triangular and square lattices, respectively. Our general method is not

restricted to lattice structures made from identical resistors as is demonstrated in a

simple, one dimensional example. Moreover, our method can be extended to a uniform

tiling of a surface of a toroid or cylinder. The theory of perturbed lattices developed

in reference [10] can easily be extended to such resistor networks as we discuss in this

work.

In condensed matter physics, often the tight binding model (see, eg, [7, 20, 21, 22,

23, 24, 25]) is a very good approximation for calculating the electronic band structure or

transport properties of crystalline matter, like the recently discovered graphene [26, 27].

In such an investigation, knowledge of the Green’s function corresponding to the

Schrödinger equation is essential. Our results may be used to calculate the wave

functions at the lattice points for complicated lattice structures.

The text is organized as follows. In section 2 we outlined the general formalism to

calculate the two point resistance on an arbitrary periodic lattice. Several, non trivial

examples are presented in section 3 together with a few analytical results regarding the

resistance between nearby lattice points. The conclusions are drawn in section 4. In the

Appendices we listed the resistance formulas that provide mapping of the Kagomé and

dice lattice to the triangular lattice, and the decorated lattice to the square lattice.
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2. General formalism

Here we derive a general integral expression for the resistance between two arbitrary

lattice points in an infinite regular lattice of any resitor network.

First, we specify the d-dimensional regular lattice by its unit cell as it is common

in solid state physics. The lattice point is given by r = n1a1 + n2a2 + · · ·+ ndad, where

a1, a2, . . . , ad are the unit cell vectors in the d-dimensional space and n1, n2, . . . , nd are

arbitrary integers. We assume that in each unit cell there are p lattice points labeled

by α = 1, 2, . . . , p. Now we denote any lattice point by {r, α}, where r and α specify

the unit cell and the lattice point in the given unit cell, respectively. Figure 1 shows

an example for the lattice structure of a resistor network. We assume that all lines

represent a resistor with resistance R (although in the general formalism this restriction

has not been used). Figure 2 shows one possible choice for the unit cell of the lattice

shown in figure 1. There are four types of lattice point in each unit cell denoted by

α = 1, 2, 3, 4 in figure 2.

a1

a2 1

2

3

4

Figure 2. The unit cell (dashed lines) with unit vector a1 and a2 of the lattice shown

in figure 1. There are four lattice points in each unit cell labeled by α = 1, 2, 3, 4.

Denote the electric potential at the lattice point {r, α} by Vα(r) and the net current

flowing into the network at the lattice point {r, α} by Iα(r) (as one can see below it

is convenient to treat the problem by assuming that the current enter at {r, α} from

a source outside the lattice). Owing to Ohm’s and Kirchhoff’s laws the current Iα(r)

relates to the potential Vα(r) by the following equations:
∑

r′,β

Lαβ(r− r′) Vβ(r
′) = −Iα(r), (2.1)

where Lαβ(r− r′) is a p by p matrix called the connectivity matrix or Laplacian matrix.

For concrete examples see section 3. The minus sign has been introduced only for

convenience. In fact, if there is only one lattice point in each unit cell, ie, p = 1, then

Lαβ(r− r′) is the lattice Laplacian corresponding to the finite-difference representation

of the Laplace operator used in the literature (see, eg, references [28, 5]). From the

translational symmetry of the lattice structure it follows that the Laplacian matrix

depends only on the difference r− r′. Equation (2.1) can be written in a more compact

form using matrix notation:
∑

r′ L(r − r′)V(r′) = −I(r). Owing to the nature of the
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connectivity between lattice points, the Laplacian matrix satisfies the following relation:

L(r) = LT(−r), where T denotes the transpose of a matrix.

We now take periodic boundary conditions and consider a lattice with

N1, N2, . . . , Nd unit cells along each unit cell vector a1, a2, . . . , ad. Thus the total number

of unit cells in the d dimensional lattice is N =
∏d

i=1Ni and the total number of lattice

points is Np. Now, it is useful to introduce the reciprocal lattice. Owing to the periodic

boundary conditions, the wave vector k in the reciprocal lattice is limited to the first

Brillouin zone (BZ) and is given by

k =
m1

N1
b1 +

m2

N2
b2 + · · ·+ md

Nd

bd, (2.2)

where m1, m2, · · · md are integers such that −Ni/2 ≤ mi ≤ Ni/2 for i = 1, 2, · · · , d, and
bj are the reciprocal lattice vectors defined by aibj = 2πδij, i, j = 1, 2, · · · , d. Here we

assumed that each Ni is an even integer, which will be irrelevant in the limit Ni → ∞.

The mathematical description of the crystal lattice and the concept of the Brillouin zone

can be found in many books on solid state physics [20, 21, 22, 23, 24, 25].

We take the discrete Fourier transform of the current I(r):

I(k) =
∑

r

I(r) e−ikr, (2.3a)

and an analogous expression is valid for the potential Vα(k). Then the inverse Fourier

transforms are given by

I(r) =
1

N

∑

k∈BZ

I(k) eikr, (2.3b)

and the same is valid for the potential Vα(r). This expression can easily be proved using

the well-known relation
∑

r
eir(k−k

′) = Nδk,k′ [20, 21, 22, 23, 24, 25].

Using the Fourier transform of the current and the potential distributions

equation (2.1) can be rewritten as

L(k)V(k) = −I(k), (2.4a)

where

L(k) =
∑

r

L(r) e−ikr. (2.4b)

Since L(r) = LT(−r) it is obvious that L(k) is a Hermitian matrix, ie, L(k) = L+(k),

where + denotes the conjugate transpose of a matrix.

For a given I(k) the Fourier transform V(k) of the potential distribution can easily

be found from (2.4a):

V(k) = G(k) I(k), (2.5a)

where the lattice Green’s function G(k) (in k-space) is given by

G(k) = −L−1(k). (2.5b)

Since L(k) is a Hermitian matrix, the Green’s function G(k) is also a Hermitian matrix.

If there is only one lattice point in each unit cell, ie, p = 1, the lattice Green’s function
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G(k) is a one by one matrix and it is the lattice Green’s function of the finite-difference

representation of the Laplace operator used in the literature (see, eg, reference [5]).

To measure the resistance between lattice points {r1, α1} and {r2, α2}, we assume

that a current I enters at lattice point {r1, α1} and exits at lattice point {r2, α2}, and
at any other lattice points the currents are zero. Therefore, the current distribution in

this case can be written as

Iν(r) = I (δν,α1
δr,r1 − δν,α2

δr,r2) , (2.6a)

and its Fourier transform becomes

Iν(k) =
∑

r

Iν(r) e
−ikr = I

(

δν,α1
e−ikr1 − δν,α2

e−ikr2
)

. (2.6b)

Using equations (2.6b) and (2.5a) we find

Vµ(k) =
∑

ν

GµνIν(k) = I
[

Gµα1
(k) e−ikr1 −Gµα2

(k) e−ikr2
]

, (2.7a)

and the potential distribution in r-space becomes

Vµ(r) =
1

N

∑

k∈BZ

Vµ(k) e
ikr =

I

N

∑

k∈BZ

[

Gµα1
(k) eik(r−r1) −Gµα2

(k) eik(r−r2)
]

. (2.7b)

Now the resistance between lattice points {r1, α1} and {r2, α2} is given by

Rα1α2
(r1, r2) =

Vα1
(r1)− Vα2

(r2)

I
. (2.8)

Then using equation (2.7b) we find

Rα1α2
(r1, r2) =

1

N

∑

k∈BZ

[

Gα1α1
(k) +Gα2α2

(k)

−Gα1α2
(k) e−ik(r2−r1) −Gα2α1

(k) eik(r2−r1)
]

. (2.9)

If we take the limit Ni → ∞ for all i = 1, 2, . . . , d then the discrete summation over

k can be substituted by an integral [20, 21, 22, 23, 24, 25]:

1

N

∑

k∈BZ

→ v0

∫

k∈BZ

ddk

(2π)d
, (2.10)

where v0 is the volume of the unit cell. Thus the resistance Rα1α2
(r1, r2) becomes

Rα1α2
(r1, r2) = v0

∫

k∈BZ

ddk

(2π)d

[

Gα1α1
(k) +Gα2α2

(k)

−Gα1α2
(k) e−ik(r2−r1) −Gα2α1

(k) eik(r2−r1)
]

. (2.11)

This is the central result of this work. Note that the resistance depends only on

the difference r2 − r1 which is a consequence of the translational symmetry of the

resistor lattice. Since G(k) is a Hermitian matrix, it is clear that the first two and

the sum of the last two terms in the above expression are real, thus the resistance is

real, as it should be. Moreover, from equation (2.11) the following symmetry relation

Rα1α2
(r1, r2) = Rα2,α1

(r2, r1) is also obvious.
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It is clear that deforming the lattice structure does not change the resistance

between two arbitrary lattice points if the topology of the lattice structure is preserved.

The same deformation was used by Atkinson and Steenwijk [4] for the triangular

lattice. Thus, one can always deform the lattice structure of any resistor network

into a d dimensional hypercube in which all the unit cell vectors have the same

magnitude and they are perpendicular to each other. This topologically equivalent

d dimensional hypercube lattice is more suitable for evaluating in equation (2.11) the

necessary integrals over the Brillouin zone since the Brillouin zone also becomes a d

dimensional hypercube. Indeed, if we write r2 − r1 in terms of the unit cell vectors:

r2 − r1 = n1a1 + n2a2 + · · · + ndad then the exponentials in equation (2.11) and the

Green’s function will depend on the variables x1 = ka1, x2 = ka2, . . . , xd = kad, ie,

G(x1, . . . , xd) = G(ka1 → x1, . . . ,kad → xd). (2.12)

Moreover, the integration variables k = (k1, k2, . . . , kd) in (2.11) can also be transformed

to the variables x1, x2, . . . , xd for which the limits of the integration are ±π. The

Jacobian corresponding to the transformations of variables cancels the volume v0 of

the unit cell in (2.11). Thus, the general result (2.11) for the resistance can be rewritten

as a d dimensional integral that is a more suitable form for explicit calculations:

Rα1α2
(n1, . . . , nd) =

∫ π

−π

dx1

2π
· · ·
∫ π

−π

dxd

2π

[

Gα1α1
(x1, . . . , xd) +Gα2α2

(x1, . . . , xd)

−Gα1α2
(x1, . . . , xd) e

−i(n1x1+n2x2+···ndxd) −Gα2α1
(x1, . . . , xd) e

i(n1x1+n2x2+···ndxd)
]

. (2.13)

For any infinite regular resistor network the above result is an integral representation

of the resistance between arbitrary lattice points and provides a practical way for

determining the resistance in question.

3. Applications of the general formalism

In this section we demonstrate how this result can be applied to different lattice

structures. We present examples of one, two and three dimensional cases as well.

3.1. One dimensional resistor structure

Perhaps, the simplest periodic tiling is the one dimensional lattice structure in which

each unit cell contains two non-equivalent resistors as shown in figure 3. This lattice

R
1

R
2

R
1

R
2

a

Figure 3. A periodic tiling in one dimension with two resistors R1 and R2. In this

lattice each unit cell contains two non-equivalent lattice points labeled by α = 1, 2, ie,

p = 2. The length of the unit cell is a.

structure is also an example of the case in which the connectivity between lattice points
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in each unit cell is not necessary the same. As we mentioned before, our general

formalism outlined above can be applied to such cases as well. Indeed, now there

are two different resistances in the unit cell, R1 and R2.

In one dimension we can characterize lattice points by {r, α}, where r = ma and

α = 1, 2 (here m is an integer). Ohm’s and Kirchhoff’s laws for the currents Iα(r) at

site {r, α} (with α = 1, 2) can be written as

I1(r) =
V1(r)− V2(r)

R1
+

V1(r)− V2(r − a)

R2
, (3.1a)

I2(r) =
V2(r)− V1(r)

R1

+
V2(r)− V1(r + a)

R2

. (3.1b)

Hence, the Laplacian matrix can be written as

L(r) =





− δr,0
R1

− δr,0
R2

δr,0
R1

+ δr,a
R2

δr,0
R1

+
δr,−a

R2
− δr,0

R1
− δr,0

R2



 , (3.2a)

and its Fourier transformation reads

L(k) =





− 1
R1

− 1
R2

1
R1

+ e−ika

R2

1
R1

+ eika

R2
− 1

R1
− 1

R2



 . (3.2b)

Inverting the matrix L(k) the Green’s function defined by equation (2.5b) becomes

G(k) =
1

4 sin2 ka
2





R1 +R2 R2 +R1e
−ika

R2 +R1e
−ika R1 +R2



. (3.3)

Now, changing the variable k to x, the Green’s function in equation (2.13) (for d = 1)

transforms to G(x) = G(ka → x).

The resistance between lattice points {0, α} and {ma, β} can be obtained from

equation (2.13) for the one-dimensional case ( d = 1):

R11(m) = R22(m) = (R1 +R2) f(m), (3.4a)

R12(m) = R1f(m+ 1) +R2f(m), (3.4b)

R21(m) = R1f(m− 1) +R2f(m), where (3.4c)

f(m) =

∫ π

−π

dx

2π

1− cosmx

1− cos x
. (3.4d)

The function f(m) can be evaluated using the method of residues and we find f(m) =

|m|, if m is an integer. Thus, R11(m) = (R1 +R2) |m|, R12(m) = R1|m + 1| + R2|m|
and R21(m) = R1|m− 1|+R2|m|. These results can easily be understood from the fact

that the current flows only between lattice point {0, α} and {ma, β}, and between these

points the resistances are in series. The two semi-infinite segments of the chain do not

affect the resistance.
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3.2. Tiling of the plane by squares and octagons

Consider the resistor network shown in figure 1. Hereafter, we assume that all lines

represent a resistor with resistance R. Using Ohm’s and Kirchhoff’s laws the currents

Iα(r) at site {r, α} (with α = 1, 2, 3, 4) can be written as

I1(r) =
V1(r)− V2(r)

R
+

V1(r)− V3(r− a1)

R
+

V1(r)− V4(r)

R
, (3.5a)

I2(r) =
V2(r)− V1(r)

R
+

V2(r)− V3(r)

R
+

V2(r)− V4(r− a2)

R
, (3.5b)

I3(r) =
V3(r)− V1(r+ a1)

R
+

V3(r)− V2(r)

R
+

V3(r)− V4(r)

R
, (3.5c)

I4(r) =
V4(r)− V1(r)

R
+

V4(r)− V2(r+ a2)

R
+

V4(r)− V3(r)

R
. (3.5d)

From these equations one can easily read out the Laplacian matrix:

L(r) =
1

R















−3δr,r δr,0 δr,a1
δr,0

δr,0 −3δr,0 δr,0 δr,a2

δr,−a1
δr,0 −3δr,0 δr,0

δr,0 δr,−a2
δr,0 −3δr,0















. (3.6)

Hence, the Fourier transform of the Laplacian matrix (3.6) is given by

L(k) =
1

R















−3 1 e−ika1 1

1 −3 1 e−ika2

eika1 1 −3 1

1 eika2 1 −3















. (3.7)

Inverting the above matrix L(k), the Green’s function can easily be calculated from

equation (2.5b) and changing the variables we find

G(x1, x2) = G(ka1 → x1,ka2 → x2). (3.8)

Since the resistance depends only on the difference r2−r1 we can take the lattice vector

r1 (at which the current I enters the network) to the origin. Specify the lattice vector

r2 ≡ r0 = ma1 + na2 (at which the current I exits the network). Then using the main

result (2.13) for d = 2, the resistance between lattice point {0, α} and {r0, β} is given

by

Rαβ(m,n) =

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π

[

Gαα(x1, x2) +Gββ(x1, x2)

−Gαβ(x1, x2)e
−i(mx1+nx2) −Gβα(x1, x2)e

i(mx1+nx2)
]

. (3.9)

It can be shown that in the above expression one integral can be evaluated analytically

by the method of residues [28] much in the same way as in reference [5] for the square

and triangular lattices.
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Applying this result we calculated the resistance for a few cases. For example, for

the resistance between lattice point 1 and 2 that belong to the same unit cell, we obtain

R12(0, 0) =
R

2

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π
f(x1, x2),

f(x1, x2) =
−9 + 4 cosx1 + 4 cosx2 + cos (x1 − x2)

−7 + 3 cosx1 + 3 cosx2 + cosx1 cos x2
. (3.10a)

Performing the integrations we find

R12(0, 0) =

(

1

2
+

√
2 arctan

(

2
√
2
)

4π

)

R, (3.10b)

and numerically, R12(0, 0) ≈ 0.6385R.

Similarly, the resistance between lattice point 1 and 3 (when they are in the same

unit cell) is:

R13(0, 0) =
3
√
2

2

(

1− 2 arctan
√
2

π

)

R ≈ 0.8312R. (3.10c)

Owing to the symmetry of the lattice, R14(0, 0) = R23(0, 0) = R34(0, 0) = R12(0, 0), and

R24(0, 0) = R13(0, 0).

In adjacent unit cells the two squares are connected by one resistor, and then one

can ask what is the resistance between the two ends of this resistor. In our notation,

this can be found by calculating, eg, R31(1, 0). Using equation (3.9) we obtain

R31(1, 0) =

(

1−
√
2

2
+

√
2 arctan

√
2

π

)

R, (3.10d)

and numerically, R31(1, 0) ≈ 0.7229R. For more examples, it is useful to apply the

method of residues.

3.3. The Kagomé lattice

The next example we consider is the so-called Kagomé lattice structure [25] shown in

figure 4. The unit cell of the Kagomé lattice structure is shown in figure 5. Each unit

Figure 4. The Kagomé lattice structure of the resistor network.

cell contains three lattice points, ie, α = 1, 2, 3 and the Laplacian matrix is a three by

three matrix. In a similar way as in section 3.2, one can write down the equations for
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a1

a2

1
2

3

Figure 5. The unit cell of the Kagomé lattice with three lattice points, p = 3.

the currents for each lattice point in one unit cell. Then it is easy to show that the

Fourier transform of the Laplacian matrix for the Kagomé lattice is

L(k) =
1

R









−4 1 + e−ika1 1 + e−ika2

1 + eika1 −4 1 + eik(a1−a2)

1 + eika2 1 + e−ik(a1−a2) −4









. (3.11)

As we mentioned before equation (2.12) the lattice can be deformed to a topologically

equivalent one in which the unit cell is a hypercube, in this case, it is a square lattice

(see figure 6). Now, calculating the Green’s function from equation (2.5b) and changing

Figure 6. The topologically equivalent lattice structure of the Kagomé lattice. The

unit cell is a square.

variables according to equation (3.8) one can use the general expression (3.9) to find the

resistance between arbitrary lattice points on the Kagomé resistor network.

It is interesting to calculate the resistance between adjacent lattice points. From

symmetry it follows that R12(0, 0) = R13(0, 0) = R23(0, 0), and from equation (3.9)

we find that the integrand of the sum of these resistances is a constant and equals

3R/2. Therefore, in equation (3.9) the double integral results in R12(0, 0) +R13(0, 0) +

R23(0, 0) = 3R/2 and the resistance between the nearest neighbor lattice points is

R12(0, 0) = R13(0, 0) = R23(0, 0) = R/2. Based on the superposition principle and the

symmetry of the lattice structure the same result was found in references [29, 30].

However, our general formalism enables us to find the resistance between arbitrary

lattice points. Moreover, we show that the resistance Rαβ(m,n) on the Kagomé lattice

can be expressed in terms of the resistances R△(m,n) on a triangular lattice. To this

end, we recall the result for the triangular lattice as discussed in references [4, 5]. The

resistance between lattice points {0, 1} and {r0, 1} (here r0 = ma1 + na2 and for the
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triangular lattice there is only one lattice point in each unit cell which is labeled here

by 1) is given by

R△(m,n) = R

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π
f△

mn(x1, x2), where

f△

mn(x1, x2) =
1− cos(mx1 + nx2)

3− cosx1 − cosx2 − cos(x1 − x2)
. (3.12)

The resistor problem for triangular lattice has been well studied in references [4, 5]

including a few analytical results. Note that the above expression is slightly different

from that in reference [5] since here the angle between the two unit cell vectors a1 and

a2 is 60◦, while in reference [5] it is 120◦, but this different choice of the unit cell is

irrelevant for the resistances. Now, starting from equation (3.9) one can show that the

resistance Rαβ(m,n) on the Kagomé lattice can be expressed in terms of the resistances

R△(m,n) on the triangular lattice. The explicit expressions are given in Appendix A.

Such an interesting map between the Kagomé and the triangular resistor networks

can be understood qualitatively by applying the so-called triangular-star transformation

to the Kagomé lattice just as it was used by Atkinson and Steenwijk for honeycomb

lattices [4]. However, the Green’s function method provides a more systematic way to

deduce the resistance formulas as it was shown for the honeycomb lattice in reference [5].

Indeed, mathematically the map between the Kagomé and the triangular resistor

networks is based on the fact that the determinant of the Laplacian (3.11) for the

Kagomé lattice differs from the denominator of the function f△

mn(x1, x2) only by a

constant factor (as it was the case for honeycomb lattice [5]). This mathematical fact

should have a topological origin, which can be a research topic in the future.

Using these results (see Appendix A) it is easy to find the resistance between the

opposite corners of a hexagon on the Kagomé lattice, eg, by calculating R33(1, 0) or

R22(0, 1) and we obtain R33(1, 0) = R22(0, 1) =
(

4
9
+ 2

√
3

3π

)

R ≈ 0.8120R.

3.4. The dice lattice

The dice lattice (figure 7) is a periodic tiling of the plane by rhombi having 60◦ and

120◦ interior angles and all vertices have degree 3 or 6. The dice lattice is a frequently

used lattice structure in the literature. Recently antiferromagnetic behavior has been

studied on the dice lattice [31]. One possible choice of the unit cell is shown in figure 8,

it contains three lattice points. The dice lattice can be deformed to a topologically

equivalent, two dimensional square lattice as shown in figure 9.

Using the method outlined previously one can easily obtain the Fourier transform

of the Laplacian matrix for dice lattice and it is given by

L(k) =
1

R









−6 A∗ B∗

A −3 0

B 0 −3









, (3.13)
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Figure 7. The dice lattice structure.

a1

a2

1 2 3

Figure 8. The unit cell of the dice lattice with three lattice points, p = 3.

a1

a2

1

2

3

Figure 9. The lattice structure that is topologically equivalent to the dice lattice

structure.

where A = 1 + eika1 + eika2 and B = eika1 + eika2 + eik(a1+a2).

Now, one can again use equation (3.9) to calculate the resistance between arbitrary

lattice points on a dice lattice. Much in the same way as in the case of Kagomé lattice

from equation (3.9) we find that the resistance between arbitrary lattice points on a dice

lattice can again be expressed in terms of the corresponding resistance on the triangular

lattice. The explicit expressions are given in Appendix B. The mathematical reason for

this mapping is the same as in the case of Kagomé lattice mentioned in section 3.3.

Here we present a few analytical results. For instance, the resistance between

lattice point 1 and 2 (which are in the same unit cell) may be found by calculating

R12(0, 0) and we obtain a simple result R12(0, 0) = R/2. Moreover, the resistance

between the two ends of the shorter and longer diagonal of a rhombus on a dice

lattice may be obtained by calculating R23(0, 0) and R11(1, 0), respectively and we find

R23(0, 0) =
(

5
9
+

√
3

3π

)

R ≈ 0.7393R and R11(1, 0) = R/2.
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3.5. The decorated lattice

Here we consider the so-called decorated which is a square lattice with extra lattice

points in the middle of each bond as shown in figure 10 together with a natural choice

for the unit cell vectors and lattice points labeled by α = 1, 2, 3 in each unit cell. This

lattice was used to study, eg, the phase diagram of a decorated Ising system [32] and

recently the Hubbard model [33].

a1

a2

1
2

3

Figure 10. The decorated lattice structure. Between each pair of full circles the

bond represents a resistor with resistance R. The unit cell contains three lattice points

labeled by α = 1, 2, 3, ie, p = 3.

In much the same way as in our earlier examples one can easily find the Fourier

transform of the Laplacian matrix for the decorated lattice:

L(k) =
1

R









−4 1 + e−ika1 1 + e−ika2

1 + eika1 −2 0

1 + eika2 0 −2









. (3.14)

Then, the resistance between arbitrary lattice points can be obtained from

equation (3.9). However, again just as in the case of the Kagomé and dice lattices here

there is a close relation between the decorated lattice and the square lattice regarding

the resistances. We derived explicit expressions (see Appendix C) for the resistance

Rαβ(m,n) on a decorated lattice in terms of the resistances R�(m,n) (between the

origin and the lattice point ma1 + na2 on a square lattice) given by

R�(m,n) = R

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π
f�

mn(x1, x2), where

f�

mn(x1, x2) =
1− cos(mx1 + nx2)

2− cosx1 − cosx2

. (3.15)

Regarding the resistor problem on square lattice see, eg, references [4, 5] in which a

few analytical results [4] and recurrence formulas [5] are presented. The mathematical

reason for the mapping of the decorated lattice to the square lattice of resistor network

is again based on the fact that the determinant det(L) of the Laplacian (3.14) differs

from the denominator of the function f�

mn(x1, x2) only by a constant factor, similarly as

in the case of Kagomé lattice mentioned in section 3.3.
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Note that the first equation in Appendix C can easily be understood by a simple

argument. To find the resistance R11(m,n) one can disregard the middle points of

each bond on the decorated lattice. Then the decorated lattice is equivalent to a square

lattice in which the bonds have resistance 2R. Thus we find that R11(m,n) = 2R�(m,n)

in agreement with that given by the first equation in Appendix C. For example,

R11(1, 1) = 4R/π.

Using the results given in Appendix C, we find that the resistance between lattice

points 1 and 2 that belong to the same unit cell is R12(0, 0) = 3R/4. Similarly,

the resistance between lattice points 2 and 3 (which are in the same unit cell) is

R23(0, 0) = (1 + 1/π)R ≈ 1.3183R.

3.6. Centered square lattice

In sections 3.3 and 3.4 we showed that the Kagomé and the dice lattice can be mapped

to the triangular lattice, while in section 3.5 it was shown that the decorated lattice is

mapped to the square lattice. In this section we show another interesting mapping. In

particularly, we find that the resistor network discussed in section 3.2 (see figure 1) can

be mapped to the so-called centered square lattice shown in figure 11.

a1

a2

1

2

Figure 11. The centered square lattice structure. Between each full circles the bond

represents a resistor with resistance R. The unit cell contains two lattice points labeled

by α = 1, 2, ie, p = 2.

Using Ohm’s and Kirchhoff’s laws we find easily that the Fourier transform of the

Laplacian is

L(k) =
1

R

[

A B∗

B −4

]

,where (3.16a)

A = − 8 + 2 (coska1 + coska2) , (3.16b)

B =
(

1 + eika1

) (

1 + eika2

)

. (3.16c)

Then, the Green’s function from equation (2.5b) becomes

G(k) =
1

det(L)

[

4 B∗

B −A

]

, (3.17)
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where the determinant of L(k) is given by

R det(L) = 28− 12(coska1 + coska2)

− 4 coska1 coska2. (3.18)

Note that this determinant is exactly the same as that of the Laplacian in equation (3.7).

Therefore, the Green’s function should have the same denominator in both cases. The

numerator of the Green’s functions in the two cases is different. However, the structure

of the numerator of the Green’s function for L(k) given in (3.7) is the same as that

for the centered square lattice. Thus, one can work out the resistance formulas (not

presented here) analogous to those listed in the Appendices to find the explicit mapping

between the lattice structure shown in figures 1 and 11.

Using equation (3.9) we calculated the resistance analytically for a few cases:

R11(1, 0) =

√
2 arctan

(√
2/2
)

π
R, (3.19a)

R12(0, 0) =
[1

2
−

√
2

4π
arctan

(

2
√
2
)]

R, (3.19b)

R22(1, 0) =
[

−1 +
1

π
+

9
√
2

4π
arctan

(

2
√
2
)]

R, (3.19c)

and numerically, R11(1, 0) ≈ 0.2771R, R12(0, 0) ≈ 0.3615R and R22(1, 0) ≈ 0.5651R.

3.7. Tiling of the plane by squares and triangles

To demonstrate how efficient our general formalism is for calculating the resistance in

a resistor network, we present results for a more complex lattice. Consider a network

which is a periodic tiling of the plane by squares and triangles shown in figure 12. The

unit cell may be chosen as can be seen in figure 13.

Figure 12. The lattice is a periodic tiling of the plane by squares and triangles.



Uniform tiling with electrical resistors 17

a1

a2

1 2

3

4

5

6

7

8

Figure 13. The unit cell of the lattice structure shown in figure 12. There are eight

lattice points in each unit cell, p = 8.

The Fourier transform of the Laplacian matrix for the lattice shown in figure 12

can easily be found:

L(k) =
1

R







































−5 A∗ 1 B∗ 1 0 B∗ 0

A −5 A C∗ 1 0 B∗ 0

1 A∗ −5 1 0 A∗ 0 1

B C 1 −5 0 A∗ 0 1

1 1 0 0 −5 1 B∗ 1

0 0 A A 1 −5 1 1

B B 0 0 B 1 −5 1

0 0 1 1 1 1 1 −5







































, (3.20)

where A = eika1 , B = eika2 and C = eik(a2−a1).

It is difficult to find analytical result since the integrand in equation (3.9) is a very

complicated function of its variables. However, numerically we calculated the resistance

Rαβ(0, 0) (in units of R) between lattice points α = 1, . . . , 8 and β = 1, . . . , 8 that belong

to the same unit cell and find

Rαβ(0, 0) =





























0 r4 r2 r5 r2 r6 r7 r3
r4 0 r7 r8 r2 r3 r7 r6
r2 r7 0 r1 r3 r5 r6 r2
r5 r8 r1 0 r6 r5 r3 r2
r2 r2 r3 r6 0 r2 r4 r2
r6 r3 r5 r5 r2 0 r2 r1
r7 r7 r6 r3 r4 r2 0 r2
r3 r6 r2 r2 r2 r1 r2 0





























, (3.21)

where r1 ≈ 0.3849, r2 ≈ 0.4038, r3 ≈ 0.5108, r4 ≈ 0.5396, r5 ≈ 0.5585, r6 ≈ 0.5647,

r7 ≈ 0.6230, r8 ≈ 0.6631. It is interesting to note that the resistance R14 = r5 and

R16 = r6 are almost the same numerically. However, rigorously they are not the same

since they are not related to each other by symmetry.
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3.8. Body centered cubic lattice

Finally, we present a non-trivial example for a three dimensional lattice of a resistor

network. The simple cubic lattice has already been studied in reference [5], and Glasser

and Boersma calculated the exact values of the resistances for a few cases [34]. Consider

a more complicated resistor network, namely the body centered cubic (bcc) lattice shown

in figure 14.

a1

a2

a3

Figure 14. The body centered cubic lattice as a periodic tiling of three dimensional

space. Besides the sides of the cube there are resistors between the center of the cube

and its corners. There are two non-equivalent lattice points in the bbc lattice, one is

at one of the corner of the cube and the other is at the center of the cube, ie, p = 2.

The unit cell vectors are a1, a2 and a3. All lines represent a resistor with resistance

R.

As we demonstrated above, the Laplacian matrix can be obtained from Ohm’s and

Kirchhoff’s laws and we find that its Fourier transformation can be written as

L(k) =
1

R

[

A− 14 B∗

B −8

]

,where (3.22a)

A = 2(coska1 + coska2 + coska3), (3.22b)

B = (1 + eika1)(1 + eika2)(1 + eika3). (3.22c)

Then, the Green’s function from equation (2.5b) becomes

G(k) =
1

det(L)

[

8 B∗

B 14−A

]

, (3.23)

where the determinant of L(k) is given by

R det(L) = 112− 16(coska1 + coska2 + coska3)

− 8(1 + coska1)(1 + coska2)(1 + coska3). (3.24)

The resistance between two arbitrary lattice points can be determined from

equation (2.13) for d = 3. For a few cases we find numerically that the resistances

(in units of R) are R12(0, 0, 0) ≈ 0.1945, R11(1, 0, 0) ≈ 0.1481, R11(1, 1, 0) ≈ 0.1651,

R11(1, 1, 1) ≈ 0.1717 and R22(1, 0, 0) ≈ 0.2657. It is interesting to note that the
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resistance R11(1, 0, 0) (resistance between the two ends of a side of the cube) is much

less than that in the simple cubic lattice (in this case it is R/3, see, eg, [5]). The

physical reason for this difference is that comparing with the simple cubic lattice, the

body centered cubic lattice provides more channels for the current flowing between the

two lattice points.

4. Conclusions

In this work using the Green’s function method we derived a general resistance formula

for any infinite lattice structure of resistor networks that is a periodic tiling of space in

all dimensions. Our general resistance formula was applied to several non-trivial resistor

networks to demonstrate how versatile our approach is. For the Kagomé and dice lattice

we derived explicit expressions for the resistances between two arbitrary lattice points

in terms of the resistances on a triangular lattice of resistors. Similarly, we showed that

there is a direct map between the decorated lattice of resistors and the square lattice

of resistors. We pointed out that a mapping between the lattice structure shown in

figures 1 and 11 can exist. We believe that such a mapping between different lattice

structures of resistor networks has a topological explanation. In fact we think that there

exists a classification of different resistor networks in terms of some classes. However,

for a deeper understanding of this issue more work needs to be done. This problem

could be a future challenge for physicists and mathematicians.

Tiling of plane is common in the arts and its mathematical description based on

group theory is well known in the literature. Under the title ’tiling’ one can find

numerous decorative and practical examples of possible tilings on the world-wide web.

Replacing the lines by resistors in such tilings provides a wealth of examples for possible

resistor networks not studied in the literature. Here, we presented examples that are

well known and relatively simple to find analytical results for. However, our Green’s

function method is general and makes it possible to study very complicated lattice

structures such as that discussed in section 3.7.

Our work can be extended to study the classical lattice dynamics and the vibrational

modes of atoms within the framework of the harmonic approximation. Similarly,

description of the electron dynamics governed by the Schrödinger equation in the tight

binding approximation could be another application of the Green’s function approach

outlined here in the case of resistor networks.
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Appendix A. Relation between the Kagomé and the triangular lattice of

resistor networks

In this appendix we list the results for the resistance Rαβ(m,n) on Kagomé lattice in

terms of the resistances R△(m,n) on a triangular lattice:

R11(m,n) =
R

9
+

7

3
R△(m,n)− 1

6

[

R△(m− 1, n+ 1) +R△(m+ 1, n− 1)
]

,

R12(m,n) =
R

9
+

5

6

[

R△(m,n) +R△(m+ 1, n)
]

+
1

6

[

R△(m+ 1, n− 1) +R△(m,n+ 1)
]

,

R13(m,n) =
R

9
+

5

6

[

R△(m,n) +R△(m,n + 1)
]

+
1

6

[

R△(m+ 1, n) +R△(m− 1, n+ 1)
]

,

R22(m,n) =
R

9
+

7

3
R△(m,n)− 1

6

[

R△(m,n− 1) +R△(m,n + 1)
]

,

R23(m,n) =
R

9
+

5

6

[

R△(m,n) +R△(m− 1, n+ 1)
]

+
1

6

[

R△(m− 1, n) +R△(m,n+ 1)
]

,

R33(m,n) =
R

9
+

7

3
R△(m,n)− 1

6

[

R△(m− 1, n) +R△(m+ 1, n)
]

.

The remaining resistances can be obtained from the symmetry relation Rαβ(m,n) =

Rβα(−m,−n).

Appendix B. Relation between the dice and the triangular lattice of

resistor networks

Here we list the results for the resistance Rαβ(m,n) on a dice lattice in terms of the

resistances R△(m,n) on a triangular lattice:

R11(m,n) =
3

2
R△(m,n),

R12(m,n) =
R

6
+

1

2

[

R△(m,n) +R△(m+ 1, n) +R△(m,n+ 1)
]

,

R13(m,n) =
R

6
+

1

2

[

R△(m+ 1, n) +R△(m,n + 1) +R△(m+ 1, n+ 1)
]

,

R22(m,n) =
R

3
cmn +

3

2
R△(m,n),

R23(m,n) =
R

3
+

1

6

[

2R△(m,n) + 2R△(m+ 1, n) + 2R△(m,n + 1)

+R△(m− 1, n+ 1) +R△(m+ 1, n− 1) + R△(m+ 1, n+ 1)
]

,
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R33(m,n) = R22(m,n),

where cmn = 0, if m and n equal to zero, otherwise it equals to 1. The remaining

resistances can be obtained from the symmetry relation Rαβ(m,n) = Rβα(−m,−n).

Appendix C. Relation between the decorated lattice and the square lattice

of resistor networks

Here we list the results for the resistance Rαβ(m,n) on a decorated lattice in terms of

the resistances R�(m,n) on a square lattice:

R11(m,n) = 2R�(m,n),

R12(m,n) =
R

4
+R�(m,n) +R�(m+ 1, n),

R13(m,n) =
R

4
+R�(m,n) +R�(m,n+ 1),

R22(m,n) =
R

2
+ 3R�(m,n)− 1

2

[

R�(m,n− 1) +R�(m,n+ 1)
]

,

R23(m,n) =
R

2
+

1

2

[

R�(m,n) +R�(m− 1, n) +R�(m− 1, n+ 1) +R�(m,n + 1)
]

,

R33(m,n) =
R

2
+ 3R�(m,n)− 1

2

[

R�(m− 1, n) +R�(m+ 1, n)
]

.

The remaining resistances can be obtained from the symmetry relation Rαβ(m,n) =

Rβα(−m,−n).
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