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Abstract

This paper presents an application of the spectral element method for the stability
analysis of regenerative machine tool chatter models in milling operations. An extension
of the spectral element method is introduced in order to handle the discontinuities in
the cutting force in an efficient way. The efficiency of the method is demonstrated on
some well-known machine tool chatter models taken from the literature. Efficiency is
characterized by the computational time, the convergence of the stability boundaries and
the convergence of critical characteristic multipliers. Results show that, compared to the
most widespread methods in machining literature, the spectral element method provides
significant improvements in computational time while maintaining high accuracy levels.
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1 Introduction

Machine tool chatter is the large amplitude vibration between the tool and the workpiece
involving intermittent loss of contact. These large amplitude vibrations are harmful to the
machining process since they increase the tool wear, result in a poor surface quality or even
damage the tool. The most important cause of machine tool chatter is the so called regenerative
effect. In many publications chatter is referred to as regenerative chatter. The main point of the
regenerative phenomenon is that the cutting force is determined by both the current and the
delayed positions of the tool. Therefore, the equations of motion of the machine-tool-workpiece
system are governed by a system of delay-differential equations (DDEs).
In Computer Numerical Control (CNC) systems machining parameters are usually selected
rather conservatively in order to avoid chatter and its detrimental effects; consequently, CNC
systems often utilize sub-optimal machining parameters which results in decreased productivity.
This limitation in existing systems has led to a large body of research on increasing productivity
while avoiding chatter vibrations. As a result, chatter prediction, avoidance and control has
become an important research field and the last decade has seen a steady increase in the
number of the corresponding publications [21]. Many of these publications are concerned with
identifying the chatter-free regime in the process parameter space. One tool that has been
extensively used to illustrate these regimes is the stability lobe diagram.
Stability lobe diagrams (SLDs) chart the domains of technological parameters where the oper-
ation is chatter-free or stable, and they guide the selection of optimal technological parameters
in order to maximize productivity. In order to increase the reliability of the SLDs and to
account for cutting process uncertainties and parameter shifts, several SLDs may need to be
reconstructed at different stages of the cutting process. Further, SLDs need to be recalculated
when passive [23, 24, 18] or active [4, 19] chatter control strategies are applied. The latter is
necessitated by the repeated tuning of the control parameters which requires fast computation
of the SLDs.
Consequently, it is important to seek fast algorithms for calculating SLDs. Some of the existing
numerical and semi-analytical methods for the stability analysis of machine operations include
the multi-frequency solution [1, 2], semi-discretization [9, 11], full-discretization [5, 6, 22, 16],
numerical integration [7], Runge-Kutta methods [20] and numerical simulation [25]. In many
of these methods the primary concern has been the accuracy and the range of application of
the approach.
Motivated by the need for taking the speed of the stability calculations into consideration, this
paper presents an efficient application of the spectral element (SE) method to the stability
analysis of milling processes. In the engineering literature several papers can be found on the
spectral element method [12, 13, 14, 15]. However, these papers all dealt with systems where
the time-varying coefficients are continuous functions of time. In contrast, milling is a system
where the time-periodic parameters have discontinuities caused by the periodic entrance and
exit of the cutting teeth into the cut. Due to these discontinuities, a further extension of the
SE method is needed in order to apply it efficiently to milling models. The difficulties related
to the discontinuities and the proper extension of the method are detailed in this paper.
Since in practice it is desirable to apply the most computationally efficient approach, it is
necessary to compare the SE method with other well-known methods from the literature. In
order to enable the comparison of computational efficiency, the same examples were chosen from
the published studies [10, 5, 6, 22, 16, 7, 8, 20]. The computational efficiency of the SE method
is investigated and compared based on three criteria: the computational time, the convergence
of stability boundaries, and the convergence rate of the largest characteristic multiplier.
The paper is organized as follows. First, the mathematical model of machine tool chatter in
milling operations is briefly reviewed. Then the SE method is explained and applied to the

2

https://www.researchgate.net/publication/229901693_A_spectral_element_approach_for_the_stability_of_delay_systems?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/274973929_Numerical_Integration_Method_for_Prediction_of_Milling_Stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/274973929_Numerical_Integration_Method_for_Prediction_of_Milling_Stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/271640489_Runge-Kutta_methods_for_a_semi-analytical_prediction_of_milling_stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/271640489_Runge-Kutta_methods_for_a_semi-analytical_prediction_of_milling_stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/223283875_Analytical_prediction_of_stability_lobes_in_milling_CIRP_Ann_Manuf_Technol?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/271891584_On_the_accurate_calculation_of_milling_stability_limits_using_third-order_full-discretization_method?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/271891584_On_the_accurate_calculation_of_milling_stability_limits_using_third-order_full-discretization_method?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/285548051_Extension_of_the_spectral_element_method_for_stability_analysis_of_time-periodic_delay-differential_equations_with_multiple_and_distributed_delays?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/220096966_Stability_of_delay_integro-differential_equations_using_a_spectral_element_method?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/222569642_Vibration_absorbers_for_chatter_suppression_A_new_analytical_tuning_methodology?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/275087847_Stability_Analysis_of_Milling_Via_the_Differential_Quadrature_Method?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/227644443_Semi-discretization_method_for_delayed_systems?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/245096731_Second-order_full-discretization_method_for_milling_stability_prediction?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/245096731_Second-order_full-discretization_method_for_milling_stability_prediction?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/265794513_Improved_prediction_of_stability_lobes_with_extended_multi_frequency_solution?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/271607246_An_efficient_full-discretization_method_for_prediction_of_milling_stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/271607246_An_efficient_full-discretization_method_for_prediction_of_milling_stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/232399547_Optimization_of_multiple_tuned_mass_dampers_to_suppress_machine_tool_chatter_Int_J_Mach_Tool_Manuf?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/223540036_Dynamics_and_stability_of_milling_process?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/257448825_A_spectral_element_approach_for_the_stability_analysis_of_time-periodic_delay_equations_with_multiple_delays?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/241875113_Magnetorheological_fluid-controlled_boring_bar_for_chatter_suppression?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/223690969_A_full-discretization_method_for_prediction_of_milling_stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/223690969_A_full-discretization_method_for_prediction_of_milling_stability?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/224242669_Robust_Active_Chatter_Control_in_the_High-Speed_Milling_Process?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/228903519_Stepan_G_Updated_semi-discretization_method_for_periodic_delay-differentilal_equations_with_discrete_delay_Int_J_Numer_Methods_Eng_61_117-14?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==
https://www.researchgate.net/publication/260433601_Chatter_suppression_in_ram_type_travelling_column_milling_machines_using_a_biaxial_inertial_actuator?el=1_x_8&enrichId=rgreq-15be82d03ed7fc3a5069b70cfa28b1d5-XXX&enrichSource=Y292ZXJQYWdlOzMwNDAyMzQ5ODtBUzozNzM5MDE0NzAyNTcxNTNAMTQ2NjE1NjQ2NTMyOQ==


governing equations. Thereafter, an extension of the SE method is explained. This extension
handles the discontinuities in the coefficients thus allowing more accurate calculations. The
computational properties (computational time, convergence rate of stability boundaries and
convergence rate of the largest characteristic multiplier) of the method are then presented.
Finally, the results are compared to those of other published methods in the literature.

2 Milling models

We analyze mechanical models for machine tool chatter in milling processes. Specifically, we
study milling with straight fluted tools and uniformly distributed cutting teeth, and we utilize
the circular tooth path model. The stability of the variational system is studied around the
stationary motions of single- and two-degree-of-freedom (DoF) models. These models are often
applied in the machining literature [10, 5, 6, 22, 16, 7, 8, 20] and they clearly illustrate the
proposed extension of the SE method. In this section, the governing equations are given in
detail. Note that the derivation of these equations is not described here but can be found in
Chapters 5.2.1 and 5.2.4 of [11]. In both the single and two DoF cases, equations determining
the stability of the stationary motion are given in the form

u̇(t) = Au(t)−B(t)u(t) + B(t)u(t− τ), (1)

where u ∈ R2m, with m being the DoF of the model, B(t) = B(t + τ) for all t time instances
and, in the case of a tool with uniformly distributed cutting teeth, the principal period is the
tooth passing period τ = 60/(ΩN), and matrix B(t) can be decomposed as

B(t) =
N∑
r=1

Br(t). (2)

The spindle speed of the tool, measured in rpm, is denoted by Ω and the number of cutting
teeth is given by N . For the single and two DoF models, state vector u(t) and matrices A and
Br(t) are different, as will be shown in the following two subsections.

2.1 Single DoF model

For the single DoF model, the state vector and the system matrices are

u(t) =

[
ξ(t)

ξ̇(t)

]
, A =

[
0 1
−ω2

n −2ζωn

]
, Br(t) =

wKn

mt

[
0 0

Hr(t) 0

]
, (3)

where mt is the modal mass, ζ is the damping ratio and ωn is the natural angular frequency
of the system, while w denotes the depth of cut and Kn is the normal cutting force coefficient.
State variable ξ(t) is a perturbation around the periodic stationary motion xp(t) of the tool
relative to the workpiece, thus the motion of the tool is described by x(t) = xp(t) + ξ(t). Here,
we assume that the vibrations are parallel to the feed and x gives the position of the tip of the
tool. The dimensionless specific cutting force coefficient corresponding to tooth r is

Hr(t) = gr(t) sin(ϕr(t)) (κ cos(ϕr(t)) + sin(ϕr(t))) , (4)

which is a periodic function with principal period τ . The cutting force coefficient ratio is
κ = Kt/Kn, where Kt denotes the tangential cutting force coefficient. In (4), the functions

ϕr(t) = (2πΩ/60)t+ (r − 1)2π/N, r = 1, 2, . . . , N (5)
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give the angular displacements of the cutting teeth for the case of uniformly distributed cutting
teeth and the window function

gr(t) =

{
1 if ϕent ≤ ϕr(t) mod 2π ≤ ϕex,

0 otherwise,
(6)

determines whether the rth tool is in or out of the cut, respectively. For up-milling, the tool’s
angle of entrance is ϕent = 0 and its angle of exit is ϕex = arccos(1 − 2ae/D), where ae is the
radial immersion, D is the diameter of the tool, and their ratio ae/D is the radial immersion
ratio. For down-milling, ϕent = arccos(2ae/D − 1) and ϕex = π.

2.2 Two DoF model

In the case of the two DoF model, the state vector and the system matrices are

u(t) =


ξ(t)
η(t)

ξ̇(t)
η̇(t)

 , A =

[
0 I
−K −C

]
, Br(t) =

wKn

mt

[
0 0

Hr(t) 0

]
, (7)

where
K = ω2

n I , C = 2ζωn I , Hr(t) = gr(t)Tr(t)KcQ
T
r (t), (8)

with I being a 2×2 identity matrix and

Tr(t) =

[
cos(ϕr(t)) sin(ϕr(t))
− sin(ϕr(t)) cos(ϕr(t))

]
, Kc =

[
κ
1

]
, Qr(t) =

[
sin(ϕr(t))
cos(ϕr(t))

]
. (9)

The motion of the tool is described by the vector[
x(t)
y(t)

]
=

[
xp(t)
yp(t)

]
+

[
ξ(t)
η(t)

]
(10)

where ξ(t) and η(t) define a perturbation around the stationary motion given by xp(t) and yp(t).
Here x(t) and y(t) describe the tool’s motion parallel to and perpendicular to the feed velocity,
respectively. It is assumed that the modal parameters are the same in x and y directions.

3 Application of the spectral element method

The SE method was published in [12] for autonomous delayed systems with a single point delay.
Later, the method was extended for autonomous time-delay systems subject to distributed
delays [13] and for systems with multiple point delays and time-periodic coefficients [14]. The
latest update of the method was carried out in [15], where both distributed delay and multiple
point delays were considered with time-periodic coefficients. However, none of the above papers
considered time-periodic coefficients with discontinuities, which is the case for milling models
described in the previous section. In this section, the SE method is applied to (1) and it is
shown that without the special treatment of jumps in the time-periodic coefficients the SE
method is inefficient.
The SE method uses the operator equation form of (1), given by

Au−τ,τ = 0, (11)

where
u−τ,τ = {u(t) : t ∈ [−τ, τ ]} (12)
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is a segment of function u(t) on the interval t ∈ [−τ, τ ] and operator A is defined by

Au−τ,τ = {u̇(t)−Au(t) + B(t)u(t)−B(t)u(t− τ) : t ∈ [0, τ ]} . (13)

Note that operator A gives a mapping between function segments u−τ,τ and {0 : t ∈ [0, τ ]}. If
an initial function segment u−τ,0 = {u(t) : t ∈ [−τ, 0]} is provided, then the solution segment
u0,τ = {u(t) : t ∈ [0, τ ]} for interval t ∈ [0, τ ] can be determined from (11), since u−τ,τ is
composed from u−τ,0 and u0,τ as

u−τ,τ (t) =

{
u−τ,0(t) if t ∈ [−τ, 0],

u0,τ (t) if t ∈ [0, τ ].
(14)

Due to the continuity of u−τ,τ , u−τ,0(0) = u0,τ (0) also holds.
The SE method splits the operator equation (11) into a system of operator equations by dividing
the function segment u−τ,τ into 2E number of elements as

uk =
{
u−τ,τ (t) : t ∈ [(k − 1)h, kh]

}
, k = −E + 1,−E + 2, . . . , E; (15)

where h = τ/E is the length of elements and E is the number of elements over the principal
period τ . Due to the continuity of u−τ,τ , conditions

uk(kh) = uk+1(kh) , k = −E + 1,−E + 2, . . . , E − 1 (16)

hold. After the substitution of elements (15) into (11), one obtains the system of operator
equations

Suk + Rk (uk − uk−E) = 0 , k = 1, 2, . . . , E; (17)

where the operators are defined by

Suk =

{
u̇k(t)−Auk(t) if t ∈ [(k − 1)h, kh],

0 otherwise,
(18)

Rkuk =

{
B(t)uk(t) if t ∈ [(k − 1)h, kh],

0 otherwise,
(19)

Rkuk−E =

{
B(t)uk−E(t− Eh) if t ∈ [(k − 1)h, kh],

0 otherwise.
(20)

Using the element-wise coordinate transformation

ζk =
2(t− (k − 1)h)

h
− 1 (21)

and dropping index k of ζ immediately, operators (18)–(20) become

Suk =

{
2
h
u′k(ζ)−Auk(ζ) if ζ ∈ [−1, 1],

0 otherwise,
(22)

Rkuk =

{
B
(
h(ζ+1)

2
+(k−1)h

)
uk(ζ) if ζ ∈ [−1, 1],

0 otherwise,
(23)

Rkuk−E =

{
B
(
h(ζ+1)

2
+(k−1)h

)
uk−E(ζ) if ζ ∈ [−1, 1],

0 otherwise.
(24)
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Note that the above formulas transform the original problem (1) into the system of operator
equations (17), subject to boundary conditions (16).
As a next step, elements uk are approximated by ũk, using element-wise Lagrange interpolation

ũk(ζ) =
n+1∑
j=1

φj(ζ)ũk,j , (25)

where ũk,j = ũk(ζj) and {ζj}n+1
j=1 is the Legendre-Gauss-Lobatto (LGL) point set (see Appendix

A) and the Lagrange base polynomials are given by the barycentric formula

φj(ζ) =

$j

ζ − ζj∑n+1
l=1

$l

ζ − ζl

, $j =
1

ω′(ζj)
, ω(ζ) =

n+1∏
j=1

(ζ − ζj) . (26)

With the substitution of (25), operator equations (17) are not satisfied. Consequently, residual
function segments appear in (17) according to

rk = Sũk + Rk (ũk − ũk−E) 6= 0, k = 1, 2 . . . , E. (27)

In order to obtain linearly independent algebraic equations for ũk,j, k = 1, . . . , E; j = 1, . . . , n+
1; the SE method takes the inner product of residual functions rk(ζ) with test functions ψi(ζ)
and sets them to zero which results in∫ 1

−1
rk(ζ)ψi(ζ)dζ = 0, i = 1, . . . , n; k = 1, . . . , E. (28)

Here the test functions are chosen to be the Legendre base polynomials (see Appendix B).
Equations (28) can be expanded as

n+1∑
j=1

(
Si,jũk,j + Rk

i,j (ũk,j − ũk−E,j)
)

= 0, i = 1, . . . , n; k = 1, . . . , E; (29)

where

Si,j =

∫ 1

−1

(
2

h
Iφ′j(ζ)−Aφj(ζ)

)
ψi(ζ)dζ, (30)

Rk
i,j =

∫ 1

−1
B
(
h(ζ+1)

2
+(k−1)h

)
φj(ζ)ψi(ζ)dζ. (31)

These integral terms are evaluated numerically using LGL quadrature. Consequently, the
quadrature nodes and interpolation nodes are identical and (30)–(31) are calculated according
to

Si,j =
2

h
I
n+1∑
l=1

Fi,lDl,j −AFi,j, (32)

Rk
i,j =Fi,jB

k
j , (33)

where

Fi,j =ψi(ζj)wj, (34)

Dq,j =φ′j(ζq) =


$j/$q

ζq − ζj
if j 6= q,

−
∑n+1

l=1
l 6=j

$l/$j

ζj − ζl
if j = q,

(35)

Bk
j =B

(
h(ζj + 1)

2
+ (k − 1)h

)
(36)
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Figure 1: A schematic of the structure of matrices N, M and M0 in (37)

and wj is the weight of the LGL quadrature corresponding to ζj. Note that the LGL quadrature
(32) gives exact results for (30); however, (33) is only approximate. Using equations (29) and
(16) a mapping can be constructed in the form

(N + M)Xτ = (M + M0)X0, (37)

where

X0 =



ũ−E+1,1

ũ−E+1,2
...
ũ−E+1,n+1

ũ−E+2,2
...
ũ−E+2,n+1

ũ−E+3,2
...
...
ũ0,n

ũ0,n+1



, Xτ =



ũ1,1

ũ1,2
...
ũ1,n+1

ũ2,2
...
ũ2,n+1

ũ3,2
...
...
ũE,n
ũE,n+1



(38)

and the structure of matrices N, M and M0 is shown in Figure 1. The 2mn × 2m(n + 1)
dimensional submatrices S and Rk are composed from elements (32)–(33) as

S = [Si,j]
n,n+1
i,j=1 , Rk =

[
Rk
i,j

]n,n+1

i,j=1
. (39)

In Figure 1, the blank locations of the matrices represent entries of zero, and sub-matrices Rk+1

are shifted to the right relative to sub-matrices Rk with 2mn columns. The resulting horizontal
overlap is indicated by circles in the figure. Figure 1 shows the same structure for sub-matrices
S which constitute the majority of matrix N. Using mapping (37), the approximation of the
monodromy operator can be calculated as

U = (N + M)−1 (M + M0) . (40)

The stability of the system is determined by µcr that is the largest-in-modulus eigenvalue of U.
If |µcr| ≤ 1 then the approximate system (37) is stable, otherwise it is unstable.
Note that during the calculation of the stability maps, integral terms (31) have to be recalcu-
lated each time Ω is updated (which is time-consuming) because they contain Ω via (5). In
order to eliminate the dependence of (31) on Ω, the angle domain with variable s = 2πΩt/60
is used in the sequel instead of the time domain with variable t. This transforms (1) to

u′(s) = Ãu(s)− B̃(s)u(s) + B̃(s)u(t− 2π/N), (41)

7



mt 0.03993 kg

ωn 922×2π rad/s

ζ 0.011

Kt 6× 108 N/m2

Kn 2× 108 N/m2

N 2

Table 1: Parameters used throughout the paper, chosen according to [10]

where now �′ denotes differentiation with respect to s and

B̃(s) =
N∑
r=1

B̃r(s), (42)

with matrices

Ã =

[
0 1

−1/Ω2
d −2ζ/Ωd

]
, B̃r(s) =

wd

Ω2
d

[
0 0

Hr(s) 0

]
(43)

and

Ã =

[
0 I

− 1
Ω2

d
I − 2ζ

Ωd
I

]
, B̃r(s) =

wd

Ω2
d

[
0 0

Hr(s) 0

]
(44)

for the single and two DoF models, respectively. The dimensionless spindle speed is denoted by
Ωd = 2πΩ/(60ωn) while the dimensionless depth of cut is wd = w/(mtω

2
n). After dropping the

tildes, the SE method is applied using the formulas above with dimensionless delay τ = 2π/N .

Throughout this paper, the results are presented for the parameter set given in Table 1. For
down-milling, the results are shown in Figure 2. The left column of the figure shows that the
low immersion ratio (ae/D = 0.05) results in periodic jumps in H(s) =

∑N
r=1Hr(s) and that

the convergence of the stability chart is very slow. Even with polynomial order n = 50, the
stability boundary does not coincide with the exact one. In contrast, the right column of Fig. 2
shows that in the case of full immersion (ae/D = 1) there is no discontinuity in H(s) and
that the convergence of the stability boundary is fast. In this case polynomial order n = 25
already gives accurate results. It can be thus inferred that stability maps converge slowly
when discontinuities are present in H(s) (that is when B(s) is discontinuous), otherwise they
converge fast. Consequently, in order to avoid poor convergence properties it is necessary to
further improve the method to handle discontinuities. These improvements are detailed in the
next section.

4 Extension for handling discontinuities

The inaccuracy in the stability calculation is caused by the inaccuracy of the LGL quadrature
for term (31) due to the discontinuity of function B(s). In order to avoid discontinuity within
the integral term (31), the domain of integration is split into sub-domains where the B(s)
function remains smooth. Discontinuities are caused either by the entering or the exiting of the
tool. Consequently, in order to locate the discontinuities, it is useful to decompose B(s) into
parts that correspond to different teeth. This leads to the expression

Rk
i,j =

N∑
r=1

Rk,r
i,j =

N∑
r=1

∫ 1

−1
Br

(
h(η+1)

2
+(k−1)h

)
φj(η)ψi(η)dη. (45)
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Figure 2: Convergence of stability maps for m = 1 DoF, down-milling without any treatment
of discontinuities in B(s). The radial immersion ratios are ae/D = 0.05 and ae/D = 1, the
element number is E = 1 and the stability maps are calculated on a 400 × 400 grid. Further
parameters are taken from Table 1.

The discontinuity points can be located for each Br(s) function. In this paper, we analyze
milling tools with uniformly distributed cutting teeth. Let us denote the angle of rotation
corresponding to the entrance and exit of the r-th tooth by

sr1 = ϕent − (r − 1)
2π

N
, sr2 = ϕex − (r − 1)

2π

N
, (46)

respectively. The possible cases for the location of the discontinuities relative to the principal
period [0, τ ] are the following:

I) 0 < sr1 < τ and 0 < sr2 < τ

δr1 = sr1 modh , qr1 = int (sr1/h) + 1

δr2 = sr2 modh , qr2 = int (sr2/h) + 1

II) sr1 ≤ 0 and 0 < sr2 < τ

δr1 = 0 , qr1 = 1

δr2 = sr2 modh , qr2 = int (sr2/h) + 1

III) 0 < sr1 < τ and sr2 ≥ τ

δr1 = sr1 modh , qr1 = int (sr1/h) + 1

δr2 = h , qr2 = E

IV) sr1 ≤ 0 and sr2 ≥ τ

δr1 = 0 , qr1 = 1

δr2 = h , qr2 = E

V) sr1 ≤ 0 and sr2 ≤ 0 (the rth tooth is not in the cut)

δr1 = 0 , qr1 = 1

δr2 = 0 , qr2 = 1
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Figure 3: Different scenarios for the relation between the principal period and the entrance and
exit of the rth tooth, which define the discontinuities in Hr(s).

VI) sr1 ≥ τ and sr2 ≥ τ (the rth tooth is not in the cut)

δr1 = h , qr1 = E

δr2 = h , qr2 = E

Only the first four cases are associated to actual cutting over the principal period [0, τ ], these
cases are illustrated in Figure 3. In the above formulas int(·) denotes the integer part. Using
these formulas, the integral terms in (45) can be calculated as

Rk,r
i,j =



∫ 1

−1Br

(
h(η+1)

2
+(k−1)h

)
φj(η)ψi(η)dη if qr1 < k < qr2 ,∫ 1

−1+βr1
Br

(
h(η+1)

2
+(k−1)h

)
φj(η)ψi(η)dη if k = qr1 6= qr2 ,∫ −1+βr2

−1 Br

(
h(η+1)

2
+(k−1)h

)
φj(η)ψi(η)dη if k = qr2 6= qr1 ,∫ −1+βr2

−1+βr1
Br

(
h(η+1)

2
+(k−1)h

)
φj(η)ψi(η)dη if k = qr1 = qr2 ,

0 otherwise ,

(47)

where βr1 = 2δr1/h and βr2 = 2δr2/h. The integral terms in (47) are evaluated using the LGL
quadrature according to

Rk,r
i,j =



Bk,r
j,aFi,j if qr1 < k < qr2 ,

2−βr1
2

∑n+1
l=1 Bk,r

l,b L
b
l,jF

b
i,l if k = qr1 6= qr2 ,

βr2
2

∑n+1
l=1 Bk,r

l,c L
c
l,jF

c
i,l if k = qr2 6= qr1 ,

βr2−βr1
2

∑n+1
l=1 Bk,r

l,dL
d
l,jF

d
i,l if k = qr1 = qr2 ,

0 otherwise ,

(48)

where

Bk,r
j,α = Br

(
h(ηαj +1)

2
+(k−1)h

)
, Lαl,j = φj (ηαl ) , Fα

i,l = ψi(η
α
l )wl , (49)
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and

ηαj =


ζj if α = a ,
2−βr1
2

(ζj + 1)− 1 + βr1 if α = b ,
βr2
2

(ζj + 1)− 1 if α = c ,
βr2−βr1

2
(ζj + 1)− 1 + βr1 if α = d .

(50)

As it is evident from Fig. 4, formula (45) with (49) gives fast convergence for the stability
boundaries even in the presence of discontinuities in B(t). For example, for spindle speed
range Ω ∈ [5000, 25000] rpm, polynomial order n = 20 already gives accurate results for radial
immersion ratios ae/D = 0.05, 0.1 and 0.5. For immersion ratios ae/D = 0.75 and 1, accurate
calculations require slightly higher polynomial orders (n = 30 and n = 25, respectively). Note
that, for N = 2, the smaller the radial immersion, the longer the free vibration. For a fixed
polynomial order n, the solution of the SE method is more accurate in the free vibration period
than during cutting. This is due to that in the free vibration period the delayed terms disappear,
thus a simple ordinary differential equation is solved. Consequently, the higher the ratio of the
duration of the free vibration and cutting, the more accurate the solution. Also, note that there
exists another solution for the treatment of discontinuities by locating the element boundaries
at the discontinuity points of B(t) (see [17, 3]). In contrast, this paper provides a generalized
framework, which handles discontinuities without adjusting the number and the length of the
elements.

5 Results

The proposed extension of the SE method is applied to single and two DoF models of milling
processes taken from [10, 5, 6, 22, 16, 7, 20]. Convergence ratio of the critical characteristic
multipliers and convergence of the stability boundaries are investigated and the computational
time of the stability charts are compared to those available in the literature. The Matlab code
used for the calculation of stability boundaries can be downloaded from http://www.mm.bme.

hu/~lehotzky/IJAMT2016.

5.1 Single DoF model

For the single DoF model, figures 2, 4 and 5 show stability diagrams that correspond to radial
immersion ratios ae/D = 0.05, 0.1, 0.5, 0.75 and 1. Clearly, in the case of continuous B(s)
(such as for full-immersion milling), formulas with and without the treatment of discontinuities
give the same results. The figures show that polynomial orders n = 20 ∼ 30 give accurate
results for the stability boundaries on the domain Ω ∈ [5000, 25000] rpm. It is also interesting
to note that for lower spindle speeds higher polynomial order (n) is required to achieve the
same accuracy. This can be seen in Figure 5, where the stability map of full immersion down-
milling is depicted for lower spindle speed ranges. It can also be inferred that longer non-zero
continuous part of B(s) (that is longer time within the cut) requires slightly higher polynomial
order n for accurate results.
In order to show the efficiency of the extended SE method, the computational time of construct-
ing stability diagrams is compared to those in the literature. For this purpose we selected cases
which cover the results presented in [10, 5, 6, 22, 16, 7, 20]. In order to perform meaningful com-
parisons, the stability diagrams were obtained using a computer with similar specifications to
the computers used in the above references. Namely, a PC running Matlab 2009 with 2.1 GHz
Core 2 Duo processor and 2GB RAM memory. The consistency of the computational hardware
allows performing direct comparisons between our approach and other prominent methods in
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Figure 4: Convergence of stability maps for m = 1 DoF down-milling operation with the
treatment of discontinuities in B(s) for radial immersion ratios ae/D = 0.05, 0.1, 0.5, 1. The
element number is E = 1 and the stability maps are calculated on a 400 × 400 grid. Further
parameters are taken from Table 1.

the literature as shown in Table 2. Specifically, Table 2 summarizes the computational times
corresponding to these comparisons. In this table, the lowest computational times are collected
form [10, 5, 6, 22, 16, 7, 20] for a comparison with the SE method. In the references different
spindle speed domains and immersion ratios were investigated on different grids of the param-
eter plane. These are all specified in Table 2 in order to facilitate precise and fair comparison.
The domains for the depth of cut w are selected according to the corresponding stability maps
in Figures 2, 4–5 and 8. These figures were also used for the selection of polynomial order n in
Table 2, where polynomial orders corresponding to accurate results on the given spindle speed
ranges were applied.
Table 2 shows that the SE method is the least computationally extensive approach in com-
parison to most of the other methods. One reason for the low computational time of the SE
method is that only one matrix inversion and one matrix multiplication is needed to obtain the
monodromy matrix. This contrasts the need for multiple matrix inversions which is necessary,
for example, when using the semi- and full-discretization methods.
Another reason for the efficiency of the SE method is its spectral convergence rate with respect
to polynomial order n. The spectral convergence rate is shown in Figure 6, where the absolute
error of the critical characteristic multiplier with respect to a reference characteristic multiplier
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Figure 5: Convergence of stability maps for m = 1 DoF down-milling operation with the
treatment of discontinuities in B(s) for low spindle speed ranges. The radial immersion ratio
is ae/D = 1, the element number is E = 1 and the stability maps are calculated on a 400× 400
grid. Further parameters are taken from Table 1.

µ∗cr is depicted as a function of polynomial order n for fixed number of elements E. The reference
characteristic multiplier was calculated using the SE method with E = 10 and n = 50. It can
be seen in the figure that the absolute error is progressively decreasing with the increase of
polynomial order n on a logarithmic scale. Comparing the convergence rates in [6, 16, 22, 7, 20]
with the corresponding rates for the SE method in Figure 6 shows that the latter converges
faster with respect to n. The convergence rates of the SE method are similar to those in [8].
However, since the PC used for obtaining the results in [8] has better computational power,
the corresponding efficiency of calculations cannot be meaningfully compared to the rest of the
methods in Table 2.
The only case in Table 2 where the computational time is smaller than that of the SE method
is the low immersion single degree of freedom milling with ae/D = 0.05. Here, the numerical
integration method [7] utilizes the closed form solution during the free oscillation. In contrast,
our method does not distinguish between free oscillation and cutting, and solves the free oscil-
lation using the SE method. Note that the separation of free vibration could also be applied
to the SE method in order to decrease the computation time, however, our goal was to give a
general framework rather than utilizing particular properties of the system. To elaborate, free
vibration is present only for a tool with low number of teeth in case of low-radial-immersion
milling. Nevertheless, the computation time for full-immersion milling (where there is no free
oscillation) is less using the SE method than the numerical integration method.
Note that the SE method has two approximation parameters. One is the above discussed
polynomial order n, the other one is the number of elements E. In Figure 7, the convergence
rate of the absolute error of the critical characteristic multiplier is depicted on a logarithmic
scale as a function of the number of elements E for different polynomial orders n. It can be
seen that the method does not have spectral convergence with respect to E.

5.2 Two DoF model

The convergence of the stability maps for the two DoF model (m = 2) are shown in Figure 8 for
up-milling operations with different radial immersion ratios. The calculations are carried out
with different polynomial orders n. It can be seen that polynomial order n = 20 already provides
accurate results over spindle speed domain Ω ∈ [5000, 25000] rpm for all radial immersion ratios.
The computational times for different computational arrangements can be found in Table 2,
where the lowest computational times from references [10, 5, 6, 22, 16, 7, 20] are compared
to the results of the SE method. The results show that the SE method provides the fastest
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0.1 20 31.96 293.1 [5] 20 177.92 954.1 [5]

0.5 20 32.32 20 136.51

1 25 54.49 129.6 [7] 20 138.49

20
0
×

1
00

[5
,1

0
]

k
rp

m 0.05 20 8.78 20 42.44

0.1 20 8.57 20 41.45

0.5 20 8.56 20 33.63

1 25 14.71 49 [16] 20 32.76

10
0
×

50

[5
,2

5
]

k
rp

m 0.05 20 2.41 20 11.31 26.5 [20]

0.1 20 2.44 20 11.16

0.5 20 2.46 20 8.94 9.3 [20]

1 25 4.04 20 8.69 27.4 [20]

Table 2: Computational times for different milling models for different radial immersion ratios
on three different grids and different spindle speed ranges, with a total number of elements
E = 1. Further parameters are taken from Table 1. For the single DoF model down-milling for
the two DoF model up-milling was considered.

computational times among all of the investigated cases.

6 Conclusions

This paper presented an efficient application of the SE method to the stability analysis of
single and two DoF models of machine tool chatter in milling operations. It was shown that
discontinuities in the time-dependent parameters of the governing equations deteriorate the
convergence rate of the spectral element method. In order to maintain the otherwise high
convergence rate of the SE method, the method was improved for the discontinuous cases.
Compact formulas were given for the construction of the monodromy matrix, which facilitates
the algorithmic application of the method. It was shown through numerical examples that
the extended SE method is computationally more efficient than the methods known in the
machining literature.
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Figure 6: Absolute error of the critical characteristic multiplier with respect to the reference
critical multiplier µ∗cr calculated for the case E = 10 and n = 50. The absolute error is shown
as a function of polynomial order n for different element numbers E. Results are depicted
for m = 1 DoF down-milling operations with radial immersion ratio ae/D = 1, spindle speed
Ω = 5000 rpm and depths of cut w = 0.2, w = 0.5 mm, w = 1 mm and w = 1.5 mm. Further
parameters are taken from Table 1.

Appendices

Appendix A Legendre-Gauss-Lobatto quadrature

The Legendre-Gauss-Lobatto quadrature using n+1 nodes gives exact results for all polynomials
with maximum order 2n − 1. Quadrature nodes ζj are the roots of (1 − ζ2)P ′n(ζ), that is −1,
1 and the roots of the first derivative of the Legendre polynomial of order n. The quadrature
weights are given by

wj =


2

n(n+ 1)
if j = 1, n+ 1 ;

2

n(n+ 1)P 2
n(ζj)

if j = 2, 3, . . . , n .

Appendix B Legendre polynomials

The recursive formulas of Legendre polynomials are

ψ1(ζ) = 1

ψ2(ζ) = ζ

ψj(ζ) = 2j−1
j
ζ ψj−1(ζ)− j−1

j
ψj−2(ζ) j = 3, 4, . . .
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Figure 8: Convergence of stability maps for m = 2 DoF up-milling operation with the treatment
of discontinuities in B(s) for radial immersion ratios ae/D = 0.05, 0.1, 0.5, 1. The element
number is E = 1 and the stability maps are calculated on a 400×400 grid. Further parameters
are taken from Table 1.
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