2,481 research outputs found

    A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles

    Full text link
    Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is achieved from simulated data in the presence of realistic noise perturbations, to control the reconstruction error. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity (K≃0.02K\simeq 0.02 cm2^2/g) and velocity dispersion of (co≃0.6c_o\simeq 0.6 cm/s) in the wave region. Our procedure constitutes the first step in our planned analysis of the density waves of Saturn's rings. It is very accurate and efficient in the far-wave region. However, improvements are required within the first wavelength. The ways in which this method can be used to establish diagnostics of ring physics are outlined.Comment: 50 pages,13 figures, 2 tables. Published in Icarus

    Evidence for the disintegration of KIC 12557548 b

    Get PDF
    Context. The Kepler object KIC 12557548 b is peculiar. It exhibits transit-like features every 15.7 hours that vary in depth between 0.2% and 1.2%. Rappaport et al. (2012) explain the observations in terms of a disintegrating, rocky planet that has a trailing cloud of dust created and constantly replenished by thermal surface erosion. The variability of the transit depth is then a consequence of changes in the cloud optical depth. Aims. We aim to validate the disintegrating-planet scenario by modeling the detailed shape of the observed light curve, and thereby constrain the cloud particle properties to better understand the nature of this intriguing object. Methods. We analysed the six publicly-available quarters of raw Kepler data, phase-folded the light curve and fitted it to a model for the trailing dust cloud. Constraints on the particle properties were investigated with a light-scattering code. Results. The light curve exhibits clear signatures of light scattering and absorption by dust, including a brightening in flux just before ingress correlated with the transit depth and explained by forward scattering, and an asymmetry in the transit light curve shape, which is easily reproduced by an exponentially decaying distribution of optically thin dust, with a typical grain size of 0.1 micron. Conclusions. Our quantitative analysis supports the hypothesis that the transit signal of KIC 12557548 b is due to a variable cloud of dust, most likely originating from a disintegrating object.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy and Astrophysic

    Young "Dipper" Stars in Upper Sco and ρ\rho Oph Observed by K2

    Get PDF
    We present ten young (â‰Č\lesssim10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show ∌\sim10-20 dips in flux over the 80-day observing campaign with durations of ∌\sim0.5-2 days and depths of up to ∌\sim40%. These stars are all members of the ρ\rho Ophiuchus (∌\sim1 Myr) or Upper Scorpius (∌\sim10 Myr) star-forming regions. To investigate the nature of these "dippers" we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li I absorption and Hα\alpha emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within ∌\sim10 stellar radii in most cases; however, the sub-mm observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.Comment: Accepted to ApJ, 19 pages, 10 figure

    Pretransitional behavior in a water-DDAB-5CB microemulsion close to the demixing transition. Evidence for intermicellar attraction mediated by paranematic fluctuations

    Full text link
    We present a study of a water-in-oil microemulsion in which surfactant coated water nanodroplets are dispersed in the isotropic phase of the thermotropic liquid crystal 5CB. As the temperature is lowered below the isotropic to nematic phase transition of pure 5CB, the system displays a demixing transition leading to a coexistence of a droplet rich isotropic phase with a droplet poor nematic. The transition is anticipated, in the high T side, by increasing pretransitional fluctuations in 5CB molecular orientation and in the nanodroplet concentration. The observed phase behavior supports the notion that the nanosized droplets, while large enough for their statistical behavior to be probed via light scattering, are also small enough to act as impurities, disturbing the local orientational ordering of the liquid crystal and thus experiencing pretransitional attractive interaction mediated by paranematic fluctuations. The pretransitional behavior, together with the topology of the phase diagram, can be understood on the basis of a diluted Lebwohl-Lasher model which describes the nanodroplets simply as holes in the liquid crystal.Comment: 64 pages, 16 figures, J. Chem. Phys. in pres

    RITUAL, TIME, AND ENTERNITY

    Full text link
    It is argued here that the construction of time and eternity are among ritual's entailments. In dividing continuous duration into distinct periods ritual distinguishes two temporal conditions: (1) that prevailing in mundane periods and (2) that prevailing during the intervals between them. Differences in the frequency, length, and relationship among the rituals constituting different liturgical orders are considered, as are differences between mundane periods and ritual's intervals with respect to social relations, cognitive modes, meaningfulness, and typical interactive frequencies. Periods, it is observed, relate to intervals as everchanging to never-changing, and close relationships of never changing to eternity, eternity to sanctity, and sanctity to truth are proposed. In the argument that ritual's “times out of time” really are outside mundane time, similarities to the operations of digital computers and Herbert Simon's discussion of interaction frequencies in the organization of matter are noted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72989/1/j.1467-9744.1992.tb00996.x.pd

    Leukemia-related chromosomal loss detected in hematopoietic progenitor cells of benzene-exposed workers.

    Get PDF
    Benzene exposure causes acute myeloid leukemia and hematotoxicity, shown as suppression of mature blood and myeloid progenitor cell numbers. As the leukemia-related aneuploidies monosomy 7 and trisomy 8 previously had been detected in the mature peripheral blood cells of exposed workers, we hypothesized that benzene could cause leukemia through the induction of these aneuploidies in hematopoietic stem and progenitor cells. We measured loss and gain of chromosomes 7 and 8 by fluorescence in situ hybridization in interphase colony-forming unit-granulocyte-macrophage (CFU-GM) cells cultured from otherwise healthy benzene-exposed (n=28) and unexposed (n=14) workers. CFU-GM monosomy 7 and 8 levels (but not trisomy) were significantly increased in subjects exposed to benzene overall, compared with levels in the control subjects (P=0.0055 and P=0.0034, respectively). Levels of monosomy 7 and 8 were significantly increased in subjects exposed to &lt;10 p.p.m. (20%, P=0.0419 and 28%, P=0.0056, respectively) and ≄ 10 p.p.m. (48%, P=0.0045 and 32%, 0.0354) benzene, compared with controls, and significant exposure-response trends were detected (P(trend)=0.0033 and 0.0057). These data show that monosomies 7 and 8 are produced in a dose-dependent manner in the blood progenitor cells of workers exposed to benzene, and may be mechanistically relevant biomarkers of early effect for benzene and other leukemogens

    Black Widow Pulsars: the Price of Promiscuity

    Full text link
    The incidence of evaporating 'black widow' pulsars (BWPs) among all millisecond pulsars (MSPs) is far higher in globular clusters than in the field. This implies a special formation mechanism for them in clusters. Cluster MSPs in wide binaries with WD companions exchange them for turnoff-mass stars. These new companions eventually overflow their Roche lobes because of encounters and tides. The millisecond pulsars eject the overflowing gas from the binary, giving mass loss on the binary evolution timescale. The systems are only observable as BWPs at epochs where this evolution is slow, making the mass loss transparent and the lifetime long. This explains why observed BWPs have low-mass companions. We suggest that at least some field BWPs were ejected from globular clusters or entered the field population when the cluster itself was disrupted.Comment: 6 pages, 2 figures, MNRAS in pres

    Anisotropy and periodicity in the density distribution of electrons in a quantum-well

    Full text link
    We use low temperature near-field optical spectroscopy to image the electron density distribution in the plane of a high mobility GaAs quantum well. We find that the electrons are not randomly distributed in the plane, but rather form narrow stripes (width smaller than 150 nm) of higher electron density. The stripes are oriented along the [1-10 ] crystal direction, and are arranged in a quasi-periodic structure. We show that elongated structural mounds, which are intrinsic to molecular beam epitaxy, are responsible for the creation of this electron density texture.Comment: 10 pages, 3 figure

    An (MI)LP-based Primal Heuristic for 3-Architecture Connected Facility Location in Urban Access Network Design

    Full text link
    We investigate the 3-architecture Connected Facility Location Problem arising in the design of urban telecommunication access networks. We propose an original optimization model for the problem that includes additional variables and constraints to take into account wireless signal coverage. Since the problem can prove challenging even for modern state-of-the art optimization solvers, we propose to solve it by an original primal heuristic which combines a probabilistic fixing procedure, guided by peculiar Linear Programming relaxations, with an exact MIP heuristic, based on a very large neighborhood search. Computational experiments on a set of realistic instances show that our heuristic can find solutions associated with much lower optimality gaps than a state-of-the-art solver.Comment: This is the authors' final version of the paper published in: Squillero G., Burelli P. (eds), EvoApplications 2016: Applications of Evolutionary Computation, LNCS 9597, pp. 283-298, 2016. DOI: 10.1007/978-3-319-31204-0_19. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-31204-0_1

    Worm Epidemics in Wireless Adhoc Networks

    Full text link
    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet
    • 

    corecore