652 research outputs found

    Flux of atmospheric muons: Comparison between AIRES simulations and CAPRICE98 data

    Get PDF
    We report on a comparison between the flux of muons in the atmosphere measured by the CAPRICE98 experiment and simulations performed with the air shower simulation program AIRES. To reduce systematic uncertainties we have used as input the primary fluxes of protons and helium nuclei also measured by the CAPRICE98 experiment. Heavy nuclei are also taken into account in the primary flux, and their contribution to the muon flux is discussed. The results of the simulations show a very good agreement with the experimental data, at all altitudes and for all muon momenta. With the exception of a few isolated points, the relative differences between measured data and simulations are smaller than 20 %; and in all cases compatible with zero within two standard deviations. The influence of the input cosmic ray flux on the results of the simulations is also discussed. This report includes also an extensive analysis of the characteristics of the simulated fluxes.Comment: Accepted for publication in Physical Review

    Progresses in the validation of the FLUKA atmospheric neutrino flux calculations

    Get PDF
    The FLUKA calculation of the atmospheric neutrino fluxes have been cross-checked by comparing predictions on lepton fluxes in atmosphere to experimental data. The dependence of predicted neutrino fluxes on the shape and normalization of primary spectrum is also investigatedComment: Presented at TAUP2001 (Sep. 8-12, Assergi, Italy). 5 pages, 1 figur

    Spatial Resolution of Double-Sided Silicon Microstrip Detectors for the PAMELA Apparatus

    Full text link
    The PAMELA apparatus has been assembled and it is ready to be launched in a satellite mission to study mainly the antiparticle component of cosmic rays. In this paper the performances obtained for the silicon microstrip detectors used in the magnetic spectrometer are presented. This subdetector reconstructs the curvature of a charged particle in the magnetic field produced by a permanent magnet and consequently determines momentum and charge sign, thanks to a very good accuracy in the position measurements (better than 3 um in the bending coordinate). A complete simulation of the silicon microstrip detectors has been developed in order to investigate in great detail the sensor's characteristics. Simulated events have been then compared with data gathered from minimum ionizing particle (MIP) beams during the last years in order to tune free parameters of the simulation. Finally some either widely used or original position finding algorithms, designed for such kind of detectors, have been applied to events with different incidence angles. As a result of the analysis, a method of impact point reconstruction can be chosen, depending on both the particle's incidence angle and the cluster multiplicity, so as to maximize the capability of the spectrometer in antiparticle tagging.Comment: 28 pages, 18 figures, submitted to Nuclear Instruments and Methods in Physics Research

    Kaluza-Klein Dark Matter and Galactic Antiprotons

    Get PDF
    Extra dimensions offer new ways to address long-standing problems in beyond the standard model particle physics. In some classes of extra-dimensional models, the lightest Kaluza-Klein particle is a viable dark matter candidate. In this work, we study indirect detection of Kaluza-Klein dark matter via its annihilation into antiprotons. We use a sophisticated galactic cosmic ray diffusion model whose parameters are fully constrained by an extensive set of experimental data. We discuss how fluxes of cosmic antiprotons can be used to exclude low Kaluza-Klein masses.Comment: 14 pages, 7 figures, 3 table

    Uncertainties on Atmospheric Neutrino Flux Calculations

    Get PDF
    The strong evidence of new physics coming from atmospheric neutrino experiments has motivated a series of critical studies to test the robustness of the available flux calculations. In view of a more precise determination of the parameters of new physics, new and more refined flux calculations are in progress. Here we review the most important sources of theoretical uncertainties which affect these computations, and the attempts currently under way to improve them.Comment: Extended version of talk given at NOW2000, Conca Specchiulla, Otranto, Italy, Sep. 2000 Fig. 2 has been replace

    Difference between radiative transition rates in atoms and antiatoms

    Full text link
    We demonstrate that CP violation results in a difference of the partial decay rates of atoms and antiatoms. The magnitude of this difference is estimated.Comment: 5 pages, 5 figure

    Calculation Of Secondary Particles In Atmosphere And Hadronic Interactions

    Get PDF
    Calculation of secondary particles produced by the interaction of cosmic rays with the nuclei of Earth's atmosphere pose important requirements to particle production models. Here we summarize the important features of hadronic simulations, stressing the importance of the so called ``microscopic'' approach, making explicit reference to the case of the FLUKA code. Some benchmarks are also presented.Comment: 10 pages, 4 figures. Extended version of report given at the IInd Workshop on Matter and anti-Matter, Trento, Oct. 200

    Launch of the Space experiment PAMELA

    Full text link
    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives and the performance in the first months after launch.Comment: Accepted for publication on Advances in Space Researc

    Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus

    Get PDF
    A new measurement of the momentum spectra of both positive and negative muons as function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on the 19-20th of July 1994 and during the balloon flight on the 8-9th of August 1994. We present results that cover the momentum intervals 0.3-40 GeV/c for negative muons and 0.3-2 GeV/c for positive muons, for atmospheric depths from 3.3 to 1000 g/cm**2, respectively. Good agreement is found with previous measurements for high momenta, while at momenta below 1 GeV/c we find latitude dependent geomagnetic effects. These measurements are important cross-checks for the simulations carried out to calculate the atmospheric neutrino fluxes and to understand the observed atmospheric neutrino anomaly.Comment: 28 pages, 13 Postscript figures, uses revtex.sty, to appear in Phys. Rev.
    • …
    corecore