1,554 research outputs found
Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations
We recently reported on the detection of a possible planetary-mass companion
to Beta Pictoris at a projected separation of 8 AU from the star, using data
taken in November 2003 with NaCo, the adaptive-optics system installed on the
Very Large Telescope UT4. Eventhough no second epoch detection was available,
there are strong arguments to favor a gravitationally bound companion rather
than a background object. If confirmed and located at a physical separation of
8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be
the closest planet to its star ever imaged, could be formed via core-accretion,
and could explain the main morphological and dynamical properties of the dust
disk. Our goal was to return to Beta Pic five years later to obtain a
second-epoch observation of the companion or, in case of a non-detection,
constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and
Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with
NaCo in January and February 2009. We also use 4QPM data taken in November
2004. No point-like signal with the brightness of the companion candidate
(apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances
down to 6.5 AU from the star in the 2009 data. As expected, the non-detection
does not allow to rule out a background object; however, we show that it is
consistent with the orbital motion of a bound companion that got closer to the
star since first observed in 2003 and that is just emerging from behind the
star at the present epoch. We place strong constraints on the possible orbits
of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy
and Astrophysic
Searching for sub-stellar companion into the LkCa15 proto-planetary disk
Recent sub-millimetric observations at the Plateau de Bure interferometer
evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around
the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud.
Additional Spitzer observations have corroborated this result possibly
explained by the presence of a massive (>= 5 MJup) planetary mass, a brown
dwarf or a low mass star companion at about 30 AU from the star. We used the
most recent developments of high angular resolution and high contrast imaging
to search directly for the existence of this putative companion, and to bring
new constraints on its physical and orbital properties. The NACO adaptive
optics instrument at VLT was used to observe LkCa15 using a four quadrant phase
mask coronagraph to access small angular separations at relatively high
contrast. A reference star at the same parallactic angle was carefully observed
to optimize the quasi-static speckles subtraction (limiting our sensitivity at
less than 1.0). Although we do not report any positive detection of a faint
companion that would be responsible for the observed gap in LkCa15's disk
(25-30 AU), our detection limits start constraining its probable mass,
semi-major axis and eccentricity. Using evolutionary model predictions, Monte
Carlo simulations exclude the presence of low eccentric companions with masses
M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence.
For closer orbits, brown dwarf companions can be rejected with a detection
probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits
do not access the star environment close enough to fully exclude the presence
of a brown dwarf or a massive planet within the disk inner activity (i.e at
less than 30 AU). Only, further and higher contrast observations should unveil
the existence of this putative companion inside the LkCa15 disk.Comment: 6 pages, 4 figures, accepted for publication in A&
Concurrent enhancement of percolation and synchronization in adaptive networks
Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features of networked systems' collective behaviors, and suggests also self-organized ways to control synchronization and percolation in natural and social systems
Stability of axial orbits in galactic potentials
We investigate the dynamics in a galactic potential with two reflection
symmetries. The phase-space structure of the real system is approximated with a
resonant detuned normal form constructed with the method based on the Lie
transform. Attention is focused on the stability properties of the axial
periodic orbits that play an important role in galactic models. Using energy
and ellipticity as parameters, we find analytical expressions of bifurcations
and compare them with numerical results available in the literature.Comment: 20 pages, accepted for publication on Celestial Mechanics and
Dynamical Astronom
Delayed Self-Synchronization in Homoclinic Chaos
The chaotic spike train of a homoclinic dynamical system is self-synchronized
by re-inserting a small fraction of the delayed output. Due to the sensitive
nature of the homoclinic chaos to external perturbations, stabilization of very
long periodic orbits is possible. On these orbits, the dynamics appears chaotic
over a finite time, but then it repeats with a recurrence time that is slightly
longer than the delay time. The effect, called delayed self-synchronization
(DSS), displays analogies with neurodynamic events which occur in the build-up
of long term memories.Comment: Submitted to Phys. Rev. Lett., 13 pages, 7 figure
On the Orbit Structure of the Logarithmic Potential
We investigate the dynamics in the logarithmic galactic potential with an
analytical approach. The phase-space structure of the real system is
approximated with resonant detuned normal forms constructed with the method
based on the Lie transform. Attention is focused on the properties of the axial
periodic orbits and of low order `boxlets' that play an important role in
galactic models. Using energy and ellipticity as parameters, we find analytical
expressions of several useful indicators, such as stability-instability
thresholds, bifurcations and phase-space fractions of some orbit families and
compare them with numerical results available in the literature.Comment: To appear on the Astrophysical Journa
An aperture masking mode for the MICADO instrument
MICADO is a near-IR camera for the Europea ELT, featuring an extended field
(75" diameter) for imaging, and also spectrographic and high contrast imaging
capabilities. It has been chosen by ESO as one of the two first-light
instruments. Although it is ultimately aimed at being fed by the MCAO module
called MAORY, MICADO will come with an internal SCAO system that will be
complementary to it and will deliver a high performance on axis correction,
suitable for coronagraphic and pupil masking applications. The basis of the
pupil masking approach is to ensure the stability of the optical transfer
function, even in the case of residual errors after AO correction (due to non
common path errors and quasi-static aberrations). Preliminary designs of pupil
masks are presented. Trade-offs and technical choices, especially regarding
redundancy and pupil tracking, are explained.Comment: SPIE 2014 Proceeding -- Montrea
Recommended from our members
The vertical structure of ocean heat transport
One of the most important contributions the ocean makes to Earth's climate is through its poleward heat transport: about 1.5 PW or more than 30% of that accomplished by the ocean-atmosphere system (Trenberth and Caron, 2001). Recently, concern has arisen over whether global warming could affect this heat transport (Watson et al., 2001), for example, reducing high latitude convection and triggering a collapse of the deep overturning circulation (Rahmstorf, 1995). While the consequences of abrupt changes in oceanic circulation should be of concern, we argue that the attention devoted to deep circulations is disproportionate to their role in heat transport. For this purpose, we introduce a heat function which identifies the contribution to the heat transport by different components of the oceanic circulation. A new view of the ocean emerges in which a shallow surface intensified circulation dominates the poleward heat transport
- …