The chaotic spike train of a homoclinic dynamical system is self-synchronized
by re-inserting a small fraction of the delayed output. Due to the sensitive
nature of the homoclinic chaos to external perturbations, stabilization of very
long periodic orbits is possible. On these orbits, the dynamics appears chaotic
over a finite time, but then it repeats with a recurrence time that is slightly
longer than the delay time. The effect, called delayed self-synchronization
(DSS), displays analogies with neurodynamic events which occur in the build-up
of long term memories.Comment: Submitted to Phys. Rev. Lett., 13 pages, 7 figure