4,217 research outputs found

    Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101: evidence for aqueous alteration prior to complex mixing

    Get PDF
    Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks (LON) 94101 have been characterized using scanning and transmission electron microscopy and electron microprobe analysis to determine their degrees of aqueous alteration, and the timing of alteration relative to incorporation of clasts into the host. The provenance of the clasts, and the mechanism by which they were incorporated and mixed with their host material are also considered. Results show that at least five distinct types of clasts occur in LON 94101, of which four have been aqueously altered to various degrees and one is largely anhydrous. The fact that they have had different alteration histories implies that the main part of aqueous activity occurred prior to the mixing and assimilation of the clasts with their host. Further, the presence of such a variety of clasts suggests complex mixing in a dynamic environment involving material from various sources. Two of the clasts, one containing approximately 46 vol% carbonate and the other featuring crystals of pyrrhotite up to approximately 1 mm in size, are examples of unusual lithologies and indicate concentration of chemical elements in discrete areas of the parent body(ies), possibly by flow of aqueous solutions

    New chemical profiles for the asteroseismology of ZZ Ceti stars

    Get PDF
    We compute new chemical profiles for the core and envelope of white dwarfs appropriate for pulsational studies of ZZ Ceti stars. These profiles are extracted from the complete evolution of progenitor stars, evolved through the main sequence and the thermally-pulsing asymptotic giant branch (AGB) stages, and from time-dependent element diffusion during white dwarf evolution. We discuss the importance of the initial-final mass relationship for the white dwarf carbon-oxygen composition. In particular, we find that the central oxygen abundance may be underestimated by about 15% if the white dwarf mass is assumed to be the hydrogen-free core mass before the first thermal pulse. We also discuss the importance for the chemical profiles expected in the outermost layers of ZZ Ceti stars of the computation of the thermally-pulsing AGB phase and of the phase in which element diffusion is relevant. We find a strong dependence of the outer layer chemical stratification on the stellar mass. In particular, in the less massive models, the double-layered structure in the helium layer built up during the thermally-pulsing AGB phase is not removed by diffusion by the time the ZZ Ceti stage is reached. Finally, we perform adiabatic pulsation calculations and discuss the implications of our new chemical profiles for the pulsational properties of ZZ Ceti stars. We find that the whole gg-mode period spectrum and the mode-trapping properties of these pulsating white dwarfs as derived from our new chemical profiles are substantially different from those based on chemical profiles widely used in existing asteroseismological studies. Thus, we expect the asteroseismological models derived from our chemical profiles to be significantly different from those found thus far.Comment: 12 pages, 11 figures, 1 table. To be published in Ap

    Short-term emission line and continuum variations in Mrk110

    Get PDF
    We present results of a variability campaign of Mrk110 performed with the 9.2-m Hobby-Eberly Telescope (HET) at McDonald Observatory. The high S/N spectra cover most of the optical range. They were taken from 1999 November through 2000 May. The average interval between the observations was 7.3 days and the median interval was only 3.0 days. Mrk110 is a narrow-line Seyfert 1 galaxy. During our campaign the continuum flux was in a historically low stage. Considering the delays of the emission lines with respect to the continuum variations we could verify an ionization stratification of the BLR. We derived virial masses of the central black hole from the radial distances of the different emission lines and from their widths. The calculated central masses agree within 20%. Furthermore, we identified optical HeI singlet emission lines emitted in the broad-line region. The observed line fluxes agree with theoretical predictions. We show that a broad wing on the red side of the [OIII]5007 line is caused by the HeI singlet line at 5016A.Comment: 11 pages, 16 figures, A&A Latex. Accepted for publication in A&A Main Journa

    Asteroseismology of the Kepler V777 Her variable white dwarf with fully evolutionary models

    Full text link
    DBV stars are pulsating white dwarfs with atmospheres rich in He. Asteroseismology of DBV stars can provide valuable clues about the origin, structure and evolution of hydrogen-deficient white dwarfs, and may allow to study neutrino and axion physics. Recently, a new DBV star, KIC 8626021, has been discovered in the field of the \emph{Kepler} spacecraft. It is expected that further monitoring of this star in the next years will enable astronomers to determine its detailed asteroseismic profile. We perform an asteroseismological analysis of KIC 8626021 on the basis of fully evolutionary DB white-dwarf models. We employ a complete set of evolutionary DB white-dwarf structures covering a wide range of effective temperatures and stellar masses. They have been obtained on the basis of a complete treatment of the evolutionary history of progenitors stars. We compute g-mode adiabatic pulsation periods for this set of models and compare them with the pulsation properties exhibited by KIC 8626021. On the basis of the mean period spacing of the star, we found that the stellar mass should be substantially larger than spectroscopy indicates. From period-to-period fits we found an asteroseismological model characterized by an effective temperature much higher than the spectroscopic estimate. In agreement with a recent asteroseismological analysis of this star by other authors, we conclude that KIC 8626021 is located near the blue edge of the DBV instability strip, contrarily to spectroscopic predictions. We also conclude that the mass of KIC 8626021 should be substantially larger than thought.Comment: 7 pages, 5 figures, 3 tables. To be published in Astronomy and Astrophysic

    New methods in conformal partial wave analysis

    Full text link
    We report on progress concerning the partial wave analysis of higher correlation functions in conformal quantum field theory.Comment: 16 page

    The rate of cooling of the pulsating white dwarf star G117-B15A: a new asteroseismological inference of the axion mass

    Get PDF
    We employ a state-of-the-art asteroseismological model of G117-B15A, the archetype of the H-rich atmosphere (DA) white dwarf pulsators (also known as DAV or ZZ Ceti variables), and use the most recently measured value of the rate of period change for the dominant mode of this pulsating star to derive a new constraint on the mass of axion, the still conjectural non-barionic particle considered as candidate for dark matter of the Universe. Assuming that G117-B15A is truly represented by our asteroseismological model, and in particular, that the period of the dominant mode is associated to a pulsation g-mode trapped in the H envelope, we find strong indications of the existence of extra cooling in this star, compatible with emission of axions of mass m_a \cos^2 \beta = 17.4^{+2.3}_{-2.7} meV.Comment: 9 pages, 5 figures and 3 tables. Accepted for publication in MNRA
    corecore