140 research outputs found

    A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds

    Get PDF
    A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Kohler equation in order to create a diameter dependent hygroscopic aerosol model (Aerosol Diameter Dependent Equilibrium Model – ADDEM). The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA), specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However, the magnitudes of all of the above sensitivities are potentially less than those introduced when using a semi ideal growth factor analogue for certain conditions

    A curved multi-component aerosol hygroscopicity model framework: Part 2 - Including organic compounds

    Get PDF
    International audienceThis paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM) framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5?6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwannee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly soluble in water, significant deviations from measured surface tension depression behaviour were predicted with both model formalisms tested. A Sensitivity analysis showed that such variation is likely to lead to predicted growth factors within the measurement uncertainty for growth factor taken in the sub-saturated regime. Greater sensitivity was found for the value of dry density used in the assumed form of the dried out aerosol. Comparison with a coupled thermodynamic approach showed that assumed values for interactions parameters may lead to erroneous results where a simple additive approach may provide more accurate results. However, where available, the use of coupled thermodynamics can better reproduce measured behaviour. Further work (and laboratory data) is required to assess whether this difference lies within the experimental uncertainty of observed hygroscopic behaviour for a variety of systems

    Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Get PDF
    International audienceIn order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus, it would appear that in order to model multi-component surface tensions involving compounds used in this study one requires the use of appropriate binary data. However, results indicate that the use of theoretical frameworks which contain parameters derived from binary data may predict unphysical behaviour when taken beyond the concentration ranges used to fit such parameters. The effect of deviations between predicted and measured surface tensions on predicted critical saturation ratios was quantified, by incorporating the surface tension models into an existing thermodynamic framework whilst firstly neglecting bulk to surface partitioning. Critical saturation ratios as a function of dry size for all of the multi-component systems were computed and it was found that deviations between predictions increased with decreasing particle dry size. As expected, use of the surface tension of pure water, rather than calculate the influence of the solutes explicitly, led to a consistently higher value of the critical saturation ratio indicating that neglect of the compositional effects will lead to significant differences in predicted activation behaviour even at large particle dry sizes. Following this two case studies were used to study the possible effect of bulk to surface partitioning on critical saturation ratios. By employing various assumptions it was possible to perform calculations not only for a binary system but also for a mixed organic system. In both cases this effect lead to a significant increase in the predicted critical supersaturation ratio compared to the above treatment. Further analysis of this effect will form the focus of future work

    Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: Measurements, model predictions and importance for cloud activation predictions

    Get PDF
    In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus, it would appear that in order to model multi-component surface tensions involving compounds used in this study one requires the use of appropriate binary data. However, results indicate that the use of theoretical frameworks which contain parameters derived from binary data may predict unphysical behaviour when taken beyond the concentration ranges used to fit such parameters. The effect of deviations between predicted and measured surface tensions on predicted critical saturation ratios was quantified, by incorporating the surface tension models into an existing thermodynamic framework whilst firstly neglecting bulk to surface partitioning. Critical saturation ratios as a function of dry size for all of the multi-component systems were computed and it was found that deviations between predictions increased with decreasing particle dry size. As expected, use of the surface tension of pure water, rather than calculate the influence of the solutes explicitly, led to a consistently higher value of the critical saturation ratio indicating that neglect of the compositional effects will lead to significant differences in predicted activation behaviour even at large particle dry sizes. Following this two case studies were used to study the possible effect of bulk to surface partitioning on critical saturation ratios. By employing various assumptions it was possible to perform calculations not only for a binary system but also for a mixed organic system. In both cases this effect lead to a significant increase in the predicted critical supersaturation ratio compared to the above treatment. Further analysis of this effect will form the focus of future work

    Closure between measured and modelled particle hygroscopic growth during TORCH2 implies ammonium nitrate artefact in the HTDMA measurements

    No full text
    International audienceMeasurements of aerosol properties were made in aged polluted and clean background air masses encountered at the North Norfolk (UK) coastline during the second field campaign of the Tropospheric ORganic CHemistry project (TORCH2) in May 2004. Hygroscopic growth factor (GF) measurements were performed at 90% relative humidity (RH) for D0=27?217 nm particles using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA), while the aerosol composition was simultaneously measured with an Aerodyne aerosol mass spectrometer (Q-AMS). During the clean background events the aerosol was characterised by little size dependence of properties with generally large GFs and inorganic sulphate being the dominant compound. In aged polluted air masses the particles were dominated by inorganic sulphate and nitrate at larger sizes, whereas organics were the largest fraction in smaller particles, thus explaining the trend of smaller GFs at smaller sizes. Organics do contribute to the hygroscopic growth, particularly at small sizes, but generally the dominant contribution to growth at 90% RH comes from inorganic salts. The ZSR mixing rule was used to predict GFs based on the chemical composition, theoretical GFs of pure inorganic salts and a "bulk" GF of ~1.20 for the organics. Good quantitative closure with HTDMA measurements as a function of both particle size and time was achieved in the absence of nitrate. However, GFs were clearly overpredicted at times when a significant fraction of nitrate was present. After careful considerations we attribute the overprediction to substantial evaporation losses of ammonium nitrate in the HTDMA instrument. If true, this implies that the ZSR predictions based on composition might be more representative of the actual "bulk" behaviour of undisturbed ambient particles than the HTDMA measurements. The simplified model approach using the ZSR rule and a constant organic growth factor made high size and time resolution possible, which has proven to be essential for a valid closure study. The ZSR mixing rule appears to be sufficiently accurate, as the GF predictions are more sensitive to the exact GFs of the inorganic compounds than to the growth factor of the moderately hygroscopic organics. Therefore a more detailed analysis and modelling of the organic fraction at the expense of time and size resolution is not worth the effort for an aged aerosol and discrepancies in either direction might even be cancelled out by averaging

    Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2

    Get PDF
    International audienceMeasurements of aerosol properties were made in aged polluted and clean background air masses encountered at the North Norfolk (UK) coastline as part of the TORCH2 field campaign in May 2004. Hygroscopic growth factors (GF) at 90% relative humidity (RH) for D0=27?217 nm particles and size-resolved chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) and an Aerodyne aerosol mass spectrometer (Q-AMS), respectively. Both hygroscopic properties and chemical composition showed pronounced variability in time and with particles size. With this data set we could demonstrate that the Zdanovskii-Stokes-Robinson (ZSR) mixing rule combined with chemical composition data from the AMS makes accurate quantitative predictions of the mean GF of mixed atmospheric aerosol particles possible. In doing so it is crucial that chemical composition data are acquired with high resolution in both particle size and time, at least matching the actual variability of particle properties. The closure results indicate an ensemble GF of the organic fraction of ~1.20±0.10 at 90% water activity. Thus the organics contribute somewhat to hygroscopic growth, particularly at small sizes, however the inorganic salts still dominate. Furthermore it has been found that most likely substantial evaporation losses of NH4NO3 occurred within the HTDMA instrument, exacerbated by a long residence time of ~1 min. Such an artefact is in agreement with our laboratory experiments and literature data for pure NH4NO3, both showing similar evaporation losses within HTDMAs with residence times of ~1 min. Short residence times and low temperatures are hence recommended for HTDMAs in order to minimise such evaporation artefacts

    Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season

    Get PDF
    © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License. Whitehead, J. D., Darbyshire, E., Brito, J., Barbosa, H. M. J., Crawford, I., Stern, R., Gallagher, M. W., Kaye, P. H., Allan, J. D., Coe, H., Artaxo, P., and McFiggans, G.: Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season, Atmos. Chem. Phys., 16, 9727-9743, doi:10.5194/acp-16-9727-2016, 2016.The Amazon basin is a vast continental area in which atmospheric composition is relatively unaffected by anthropogenic aerosol particles. Understanding the proper- ties of the natural biogenic aerosol particles over the Ama- zon rainforest is key to understanding their inïŹ‚uence on re- gional and global climate. While there have been a number of studies during the wet season, and of biomass burning par- ticles in the dry season, there has been relatively little work on the transition period – the start of the dry season in the absence of biomass burning. As part of the Brazil–UK Net- work for Investigation of Amazonian Atmospheric Composi- tion and Impacts on Climate (BUNIAACIC) project, aerosol measurements, focussing on unpolluted biogenic air masses, were conducted at a remote rainforest site in the central Ama- zon during the transition from wet to dry season in July 2013. This period marks the start of the dry season but before sig- niïŹcant biomass burning occurs in the region. Median particle number concentrations were 266 cm−3, with size distributions dominated by an accumulation mode of 130–150 nm. During periods of low particle counts, a smaller Aitken mode could also be seen around 80 nm. While the concentrations were similar in magnitude to those seen during the wet season, the size distributions suggest an en- hancement in the accumulation mode compared to the wet season, but not yet to the extent seen later in the dry sea- son, when signiïŹcant biomass burning takes place. Submi- cron nonrefractory aerosol composition, as measured by an aerosol chemical speciation monitor (ACSM), was domi- nated by organic material (around 81 %). Aerosol hygro- scopicity was probed using measurements from a hygro- scopicity tandem differential mobility analyser (HTDMA), and a quasi-monodisperse cloud condensation nuclei counter (CCNc). The hygroscopicity parameter, Îș , was found to be low, ranging from 0.12 for Aitken-mode particles to 0.18 for accumulation-mode particles. This was consistent with pre- vious studies in the region, but lower than similar measure- ments conducted in Borneo, where Îș ranged 0.17–0.37. A wide issue bioaerosol sensor (WIBS-3M) was deployed at ground level to probe the coarse mode, detecting pri- mary biological aerosol by ïŹ‚uorescence (ïŹ‚uorescent biolog- ical aerosol particles, or FBAPs). The mean FBAP number concentration was 400 ± 242 L−1; however, this ranged from around 200 L−1 during the day to as much as 1200 L−1 at night. FBAPs dominated the coarse-mode particles, compris- ing between 55 and 75 % of particles during the day to more than 90 % at night. Non-FBAPs did not show a strong diur- nal pattern. Comparison with previous FBAP measurements above canopy at the same location suggests there is a strong vertical gradient in FBAP concentrations through the canopy. Cluster analysis of the data suggests that FBAPs were dom- inated (around 70 %) by fungal spores. Further, long-term measurements will be required in order to fully examine the seasonal variability and distribution of primary biological aerosol particles through the canopy. This is the ïŹrst time that such a suite of measurements has been deployed at this site to investigate the chemical compo- sition and properties of the biogenic contributions to Ama- zonian aerosol during the transition period from the wet to the dry season, and thus provides a unique comparison to the aerosol properties observed during the wet season in previ- ous similar campaigns. This was also the ïŹrst deployment of a WIBS in the Amazon rainforest to study coarse-mode parti- cles, particularly primary biological aerosol particles, which are likely to play an important role as ice nuclei in the region.Peer reviewe

    WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    Get PDF
    Abstract. Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlations with measurements of 0.7–0.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 ÎŒg kg−1air, compared with measurements of 1.0–1.5 ÎŒg kg−1air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less for alkenes (× 80) and comparable for dimethylsulfide (DMS). However the suppression of NO3 mixing ratios across the domain by N2O5 heterogeneous chemistry has only a very slight, negative, influence on this oxidative capacity. The influence on regional particulate nitrate mass loadings is stronger. Night-time N2O5 heterogeneous chemistry maintains the production of particulate nitrate within polluted regions: when this process is taken into consideration, the daytime peak (for the 95th percentile) of PM10 nitrate mass loadings remains around 5.6 ÎŒg kg−1air, but the night-time minimum increases from 3.5 to 4.6 ÎŒg kg−1air. The sustaining of higher particulate mass loadings through the night by this process improves model skill at matching measured aerosol nitrate diurnal cycles and will negatively impact on regional air quality, requiring this process to be included in regional models. This work was supported by the NERC RONOCO project NE/F004656/1. S. Archer-Nicholls was supported by a NERC quota studentship.This is the final version of the article. It first appeared at http://www.atmos-chem-phys.net/15/1385/2015/acp-15-1385-2015.pd

    The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of ÎČ-caryophyllene secondary organic aerosol

    Get PDF
    The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of secondary organic aerosol (SOA) formed during the chamber photo-oxidation of ÎČ-caryophyllene/NO<sub>x</sub> mixtures were investigated. Nucleation of ÎČ-caryophyllene SOA particles occurred almost immediately after oxidation was initiated and led to the formation of fresh SOA with a relatively simpler composition than has been reported for monoterpenes. The SOA yield values ranged from 9.5–26.7% and 30.4–44.5% using a differential mobility particle sizer (DMPS) and an aerosol mass spectrometer (AMS) mass based measurements, respectively. A total of 20 compounds were identified in the SOA by LC-MS/MS, with the most abundant compounds identified as ÎČ-caryophyllonic acid and ÎČ-caryophyllinic acid/ÎČ-nocaryophyllonic acid. The O:C and H:C elemental ratios of products identified in the condensed phase ranged from 0.20 to 1.00 and 1.00 to 2.00, with average values of 0.39 and 1.58, respectively. The increase in the O:C ratio was associated with a decrease in the saturation concentration of the identified compounds. The compounds identified in the lower initial concentration experiments were more oxidised compared to those that were found to be more abundant in the higher initial concentration experiments with average O:C ratios of 0.51 and 0.27, respectively. Photochemical ageing led to a more complex SOA composition with a larger contribution coming from lower molar mass, higher generation products, where both double bonds had been oxidised. This effect was more evident in the experiments conducted using the lower initial precursor concentration; a finding confirmed by the temporal behaviour of key organic mass fragment measured by an Aerosol Mass Spectrometer. Although the composition changed with both initial precursor concentration and ageing, this had no significant measurable effect on the hygroscopic properties of the SOA formed. The latter finding might have been influenced by the difference in pre-treatment of the semivolatile-containing particles prior to their measurements

    The characterisation of pollution aerosol in a changing photochemical environment

    Get PDF
    International audienceMeasurements are presented from a sampling location 50 km downwind of Greater London, UK, to investigate the timescales required for the atmospheric transformations of aerosol in urban emissions plumes in the context of photochemical age based on the benzene to toluene ratio. It is shown that particles at or around 100 nm in diameter exhibit the greatest systematic variability in chemical properties, and thus hygroscopic properties, on a timescale of 1?2 days. The smaller Aitken mode and larger accumulation mode particles exhibit less variability on these timescales, which we propose is as a result of their different residence times in the atmosphere. The larger accumulation particles have been in the atmosphere longer than the 100 nm particles and their chemistry and hygroscopic properties have been integrated over several days and potentially over several source regions. In contrast, the smaller Aitken mode particles show little systematic variability with photochemical age because their atmospheric lifetimes are short, thus chemical changes and hence changes in water affinity have not had time to occur. Increases in the particle diameter of up to 40% are observed at 90% relative humidity in the accumulation mode from the uptake of water as the particles become increasingly soluble in nature
    • 

    corecore