446 research outputs found

    Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers

    Get PDF
    Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprecedented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must also understand how the crystal affects the field profile in time and space. We frame the dynamical theory of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the reflected and forward scattered x-ray pulses, showing that the time delay of the wave τ\tau is linked to its transverse spatial shift Δx\Delta x through the simple relationship Δx=cτcotθ\Delta x = c\tau \cot\theta, where θ\theta is the grazing angle of incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure

    Dynamical Diffraction Theory for Wave Packet Propagation in Deformed Crystals

    Full text link
    We develop a theory for the trajectory of an x ray in the presence of a crystal deformation. A set of equations of motion for an x-ray wave packet including the dynamical diffraction is derived, taking into account the Berry phase as a correction to geometrical optics. The trajectory of the wave packet has a shift of the center position due to a crystal deformation. Remarkably, in the vicinity of the Bragg condition, the shift is enhanced by a factor ω/Δω\omega /\Delta \omega (ω\omega: frequency of an x ray, Δω\Delta\omega: gap frequency induced by the Bragg reflection). Comparison with the conventional dynamical diffraction theory is also made.Comment: 4 pages, 2 figures. Title change

    Spatiotemporal Response of Crystals in X-ray Bragg Diffraction

    Full text link
    The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultra-short, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [1] to the generic case, which includes Bragg diffraction both in reflection (Bragg) and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wavefields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg's law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make snapshots of ultra-fast processes with femtosecond resolution

    Prediction for new magnetoelectric fluorides

    Get PDF
    We use symmetry considerations in order to predict new magnetoelectric fluorides. In addition to these magnetoelectric properties, we discuss among these fluorides the ones susceptible to present multiferroic properties. We emphasize that several materials present ferromagnetic properties. This ferromagnetism should enhance the interplay between magnetic and dielectric properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed Matte

    Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture

    Full text link
    We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely flat, tilted and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy the Bragg condition everywhere and phase requirement for point focusing, and effectively focus hard x-rays to a scale close to the wavelength.Comment: 18 pages, 12 figure

    Solvent content of protein crystals from diffraction intensities by Independent Component Analysis

    Full text link
    An analysis of the protein content of several crystal forms of proteins has been performed. We apply a new numerical technique, the Independent Component Analysis (ICA), to determine the volume fraction of the asymmetric unit occupied by the protein. This technique requires only the crystallographic data of structure factors as input.Comment: 9 pages, 2 figures, 1 tabl

    Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3

    Get PDF
    We have investigated the magnetoelectric coupling in the lone pair containing piezoelectric ferrimagnet Cu2OSeO3. Significant magnetocapacitance develops in the magnetically ordered state (TC = 60 K). We find critical behavior near TC and a divergence near the metamagnetic transition at 500 Oe. High-resolution X-ray and neutron powder diffraction measurements show that Cu2OSeO3 is metrically cubic down to 10 K but that the ferrimagnetic ordering reduces the symmetry to rhombohedral R3. The metric cubic lattice dimensions exclude a magnetoelectric coupling mechanism involving spontaneous lattice strain, and this is unique among magnetoelectric and multiferroic materials.Comment: accepted for publication in PR

    Critical analysis of reference studies on the toxikinetics of aluminium-based adjuvants

    Get PDF
    We reviewed the three toxicokinetic reference studies commonly used to suggest that aluminum (Al)-based adjuvants are innocuous. A single experimental study was carried out using isotopic 26Al (Flarend et al., Vaccine, 1997). This study used aluminum salts resembling those used in vaccines but ignored adjuvant uptake by cells that was not fully documented at the time. It was conducted over a short period of time (28 days) and used only two rabbits per adjuvant. At the endpoint, Al elimination in the urine accounted for 6% for Al hydroxide and 22% for Al phosphate, both results being incompatible with rapid elimination of vaccine-derived Al in urine. Two theoretical studies have evaluated the potential risk of vaccine Al in infants, by reference to an oral "minimal risk level" (MRL) extrapolated from animal studies. Keith et al. (Vaccine, 2002) used a high MRL (2 mg/kg/d), an erroneous model of 100% immediate absorption of vaccine Al, and did not consider renal and blood-brain barrier immaturity. Mitkus et al. (Vaccine, 2011) only considered solubilized Al, with erroneous calculations of absorption duration. Systemic Al particle diffusion and neuro-inflammatory potential were omitted. The MRL they used was both inappropriate (oral Al vs. injected adjuvant) and still too high (1 mg/kg/d) regarding recent animal studies. Both paucity and serious weaknesses of reference studies strongly suggest that novel experimental studies of Al adjuvants toxicokinetics should be performed on the long-term, including both neonatal and adult exposures, to ensure their safety and restore population confidence in Al-containing vaccines

    Phenomenological Landau analysis of predicted magnetoelectric fluorides: KMnFeF6_{6} and Ba2_{2}Ni7_{7}F18_{18}

    Full text link
    Recently, we predicted based on symmetry considerations that KMnFeF6_{6} and Ba2_{2}Ni7_{7}F18_{18} are likely magnetoelectric multiferroic materials. In this contribution, we investigate with Landau theory and crystal structure considerations the polarization and the linear magnetoelectric effect in these materials. Based on these two examples, we show that any magnetoferroelectric will display additional electrical polarization below its magnetic ordering temperature. This additional electrical polarization is not related to the linear magnetoelectric effect. Its magnitude depends on the dielectric susceptibility.Comment: 11 pages, accepted for publication in Journal of Physics: Condensed Matte

    The probe beam linac in CTF3

    Get PDF
    JACoW web site http://accelconf.web.cern.ch/AccelConf/e06/The test facility CTF3, presently under construction at CERN within an international collaboration, is aimed at demonstrating the key feasibility issues of the multi-TeV linear collider CLIC. The objective of the probe beam linac is to "mimic" the main beam of CLIC in order to measure precisely the performances of the 30 GHz CLIC accelerating structures. In order to meet the required parameters of this 200 MeV probe beam, in terms of emittance, energy spread and bunch-length, the most advanced techniques have been considered: laser triggered photo-injector, velocity bunching, beam-loading compensation, RF pulse compression ... The final layout is described, and the selection criteria and the beam dynamics results are reviewed
    corecore