35 research outputs found

    Genome-wide polyadenylation site mapping datasets in the rice blast fungus Magnaporthe oryzae

    Get PDF
    Polyadenylation plays an important role in gene regulation, thus affecting a wide variety of biological processes. In the rice blast fungus Magnaporthe oryzae the cleavage factor I protein Rpb35 is required for pre-mRNA polyadenylation and fungal virulence. Here we present the bioinformatic approach and output data related to a global survey of polyadenylation site usage in M. oryzae wild-type and Delta rbp35 strains under a variety of nutrient conditions, some of which simulate the conditions experienced by the fungus during part of its infection cycle

    Tpc1 is an important Zn(II)(2)Cys(6) transcriptional regulator required for polarized growth and virulence in the rice blast fungus

    Get PDF
    The establishment of polarity is a critical process in pathogenic fungi, mediating infection-related morphogenesis and host tissue invasion. Here, we report the identification of TPC1 (Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the fungal Zn(II)(2)Cys(6) family, exclusive to filamentous fungi. Tpc1-deficient mutants show severe defects in conidiogenesis, infection-associated autophagy, glycogen and lipid metabolism, and plant tissue colonisation. By tracking actin-binding proteins, septin-5 and autophagosome components, we show that Tpc1 regulates cytoskeletal dynamics and infection-associated autophagy during appressorium-mediated plant penetration. We found that Tpc1 interacts with Mst12 and modulates its DNA-binding activity, while Tpc1 nuclear localisation also depends on the MAP kinase Pmk1, consistent with the involvement of Tpc1 in this signalling pathway, which is critical for appressorium development. Importantly, Tpc1 directly regulates NOXD expression, the p22(phox) subunit of the fungal NADPH oxidase complex via an interaction with Mst12. Tpc1 therefore controls spatial and temporal regulation of cortical F-actin through regulation of the NADPH oxidase complex during appressorium re-polarisation. Consequently, Tpc1 is a core developmental regulator in filamentous fungi, linking the regulated synthesis of reactive oxygen species and the Pmk1 pathway, with polarity control during host invasion

    Evaluation of light transmission through translucent and opaque posts

    No full text
    Objectives: The transmission of light through translucent posts was observed, and the microhardness of light-cured cement used to secure these posts was evaluated at different depths. Methods: Fifteen single-rooted standard bovine teeth, 16 mm in size, were used. The root canals were prepared using #3 drills Light-Post (five teeth) and Aestheti Post (five teeth) systems (BISCO), with a working-length of 12 mm. In five teeth, translucent posts were cemented (Light-Post #2), while another five teeth received opaque posts (Aestheti Post #2). The roots were painted with black nail varnish to prevent the passage of light through the lateral walls of the roots. The root canals of all the specimens were treated with the All-Bond 2 adhesive system (BISCO) and cemented with light-cured cement (Enforce, Dentsply). All the roots were transversally cut to obtain six specimens 1.5 mm thick. Every two sections corresponded to a specific region of the root (cervical, middle, apical), making it possible to observe the cement microhardness at different levels. The groups (n=10) were defined as: G1: translucent post (TP)/cervical region; G2: TP/middle region; G3: TP/apical region; G4: Opaque post (OP)/cervical region; G5: OP/middle region; G6: PO/apical region. Five root canals were only filled with cement for use as a control (G7). Then, Vickers microhardness analyses were performed. Results: In G3, G5 and G6, the cement was not sufficiently hard to allow for microhardness analysis. When submitted to the ANOVA test, G1 (35.07), G2 (24.28) and G4 (28.64) presented no statistical differences. When the previous groups were compared to G7 (51.00) using the Kruskal-Wallis test, a statistical difference was found. Conclusion: Translucent posts allow cement polymerization up to the middle portion of the root

    Effect of mechanical cycling on the push-out bond strength of fiber posts adhesively bonded to human root dentin

    No full text
    This study evaluated the effect of mechanical cycling on the bond strength of fiber posts bonded to root dentin. The hypotheses examined were that bond strength is not changed after fatigue testing and bond strength does not present vast variations according to the type of fiber post. Sixty crownless, single-rooted human teeth were endodontically treated, with the space prepared at 12 mm. Thirty specimens received a quartz fiber post (Q-FRC (DT Light-Post), and the remaining 30 specimens received a glass fiber post (G-FRC) (FRC Postec Plus). All the posts were resin luted (All Bond+Duolink), and each specimen was embedded in a cylinder with epoxy resin. The specimens were divided into six groups: G1-Q-FRC+no cycling, G2- Q-FRC+20,000 cycles (load: 50N, angle of 45 degrees; frequency: 8Hz); G3- Q-FRC+2,000,000 cycles; G4- G-FRC+no cycling; G5- G-FRC+20,000 cycles; G6- GFRC+2,000,000 cycles. The specimens were cut perpendicular to their long axis, forming 2-mm thick disc-samples, which were submitted to the push-out test. ANOVA (alpha=.05) revealed that: (a) QFRC (7.1 +/- 2.2MPa) and G-FRC (6.9 +/- 2.1MPa) were statistically similar (p=0.665); (b) the no cycling groups (7.0 +/- 2.4MPa), 20,000 cycles groups (7.0 +/- 2.1MPa) and 2,000,000 cycles groups (7.0 +/- 2.0MPa) were statistically similar (p=0.996). It concluded that mechanical cycling did not affect the bond strength of two fiber posts bonded to dentin

    Effect of Acid Neutralization and Mechanical Cycling on the Microtensile Bond Strength of Glass-ceramic Inlays

    No full text
    Objectives: To evaluate the hypothesis that a process of hydrofluoric acid precipitate neutralization and fatigue load cycling performed on human premolars restored with ceramic inlays had an influence on microtensile bond strength results (MTBS). Methods: MOD inlay preparations were performed in 40 premolars (with their roots embedded in acrylic resin). Forty ceramic restorations were prepared using glass-ceramic (IPS Empress). The inner surfaces of all the restorations were etched with 10% hydrofluoric acid for 60 seconds, rinsed with water and dried. The specimens were divided into two groups (N=20): 1-without neutralization; 2-with neutralization. All the restorations were silanized and adhesively cemented (self-curing and self-etching luting composite system, Multilink). Ten premolars from each group were submitted to mechanical cycling (1,400,000 cycles, 50N, 37 degrees C). After cycling, the samples were sectioned to produce non-trimmed beam specimens (vestibular dentin-restoration-lingual dentin set), which were submitted to microtensile testing. Results: Bond strength was significantly affected by the surface treatment (p neutralization) and mechanical cycling (p cycling) (2-way ANOVA and Tukey test, alpha=.05). Conclusion: Hydrofluoric acid precipitate neutralization appears to significantly damage the resin bond to glass-ceramic and should not be recommended. The clinical simulation of the specimens, by using mechanical cycling, is important when evaluating the ceramic-dentin bond

    Some Applications of Fractional Calculus in Engineering

    Get PDF
    Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of system dynamics and control. In this perspective, this paper investigates the use of FC in the fields of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis
    corecore