639 research outputs found

    Closed orbit correction at synchrotrons for symmetric and near-symmetric lattices

    Full text link
    This contribution compiles the benefits of lattice symmetry in the context of closed orbit correction. A symmetric arrangement of BPMs and correctors results in structured orbit response matrices of Circulant or block Circulant type. These forms of matrices provide favorable properties in terms of computational complexity, information compression and interpretation of mathematical vector spaces of BPMs and correctors. For broken symmetries, a nearest-Circulant approximation is introduced and the practical advantages of symmetry exploitation are demonstrated with the help of simulations and experiments in the context of FAIR synchrotrons

    Structural and Electronic Properties of Small Neutral (MgO)n Clusters

    Get PDF
    Ab initio Perturbed Ion (PI) calculations are reported for neutral stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full geometrical relaxation was considered. Correlation corrections were included for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by Clementi. The results obtained compare favorably to the experimental data and other previous theoretical studies. Inclusion of correlaiotn is crucial in order to achieve a good description of these systems. We find an important number of new isomers which allows us to interpret the experimental magic numbers without the assumption of structures based on (MgO)3 subunits. Finally, as an electronic property, the variations in the cluster ionization potential with the cluster size were studied and related to the structural isomer properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in Phys. Rev.

    Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment

    Get PDF
    The majority of transport electrification studies, examining the demand and sustainability of critical metals, have focused on light-duty vehicles. Heavy-duty vehicles have often been excluded from the research scope due to their smaller vehicle stock and slower pace of electrification. This study fills this research gap by evaluating the lithium resource impacts from electrification of the heavy-duty segment at the global level. Our results show that a mass electrification of the heavy-duty segment on top of the light-duty segment would substantially increase the lithium demand and impose further strain on the global lithium supply. The significant impact is attributed to the large single-vehicle battery capacity required by heavy-duty vehicles and the expected battery replacement needed within the lifetime of heavy-duty vehicles. We suggest that the ambition of mass electrification in the heavy-duty segment should be treated with cautions for both policy makers and entrepreneurs

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS.   Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM.   Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices.   Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

    Get PDF
    A diffuse flux of astrophysical neutrinos above 100TeV100\,\mathrm{TeV} has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35TeV35\,\mathrm{TeV} and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (fe:fμ:fτ)(1:1:1)(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of (0:1:0)(0:1:0)_\oplus is excluded at 3.3σ3.3\sigma, and a purely shower-like composition of (1:0:0)(1:0:0)_\oplus is excluded at 2.3σ2.3\sigma.Comment: 8 pages, 3 figures. Submitted to PR

    The IceCube Neutrino Observatory Part VI: Ice Properties, Reconstruction and Future Developments

    Full text link
    Papers on ice properties, reconstruction and future developments submitted to the 33nd International Cosmic Ray Conference (Rio de Janeiro 2013) by the IceCube Collaboration.Comment: 28 pages, 38 figures; Papers submitted to the 33nd International Cosmic Ray Conference, Rio de Janeiro 2013; version 2 corrects errors in the author lis
    corecore