84 research outputs found

    An integrative multi-platform analysis for discovering biomarkers of osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SELDI-TOF-MS (Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry) has become an attractive approach for cancer biomarker discovery due to its ability to resolve low mass proteins and high-throughput capability. However, the analytes from mass spectrometry are described only by their mass-to-charge ratio (<it>m</it>/<it>z</it>) values without further identification and annotation. To discover potential biomarkers for early diagnosis of osteosarcoma, we designed an integrative workflow combining data sets from both SELDI-TOF-MS and gene microarray analysis.</p> <p>Methods</p> <p>After extracting the information for potential biomarkers from SELDI data and microarray analysis, their associations were further inferred by link-test to identify biomarkers that could likely be used for diagnosis. Immuno-blot analysis was then performed to examine whether the expression of the putative biomarkers were indeed altered in serum from patients with osteosarcoma.</p> <p>Results</p> <p>Six differentially expressed protein peaks with strong statistical significances were detected by SELDI-TOF-MS. Four of the proteins were up-regulated and two of them were down-regulated. Microarray analysis showed that, compared with an osteoblastic cell line, the expression of 653 genes was changed more than 2 folds in three osteosarcoma cell lines. While expression of 310 genes was increased, expression of the other 343 genes was decreased. The two sets of biomarkers candidates were combined by the link-test statistics, indicating that 13 genes were potential biomarkers for early diagnosis of osteosarcoma. Among these genes, cytochrome c1 (CYC-1) was selected for further experimental validation.</p> <p>Conclusion</p> <p>Link-test on datasets from both SELDI-TOF-MS and microarray high-throughput analysis can accelerate the identification of tumor biomarkers. The result confirmed that CYC-1 may be a promising biomarker for early diagnosis of osteosarcoma.</p

    Associations of IL-4, IL-4R, and IL-13 Gene Polymorphisms in Coal Workers' Pneumoconiosis in China: A Case-Control Study

    Get PDF
    Background: The IL-4, IL-4 receptor (IL4R), and IL-13 genes are crucial immune factors and may influence the course of various diseases. In the present study, we investigated the association between the potential functional polymorphisms in IL-4, IL-4R, and IL-13 and coal workers ’ pneumoconiosis (CWP) risk in a Chinese population. Methods: Six polymorphisms (C-590T in IL-4, Ile50Val, Ser478Pro, and Gln551Arg in IL-4R, C-1055T and Arg130Gln in IL-13) were genotyped and analyzed in a case-control study of 556 CWP and 541 control subjects. Results: Our results revealed that the IL-4 CT/CC genotypes were associated with a significantly decreased risk of CWP (odd

    Functional Promoter -31G>C Variant in Survivin Gene Is Associated with Risk and Progression of Renal Cell Cancer in a Chinese Population

    Get PDF
    BACKGROUND: Survivin is an inhibitor of apoptosis protein and is involved in the occurrence and progression of human malignancies. Recently, a functional polymorphism (-31G>C, rs9904341) in the promoter of survivin has been shown to influence its expression and confer susceptibility to different types of cancer. The present study was aimed to investigate whether the polymorphism also influences susceptibility and progression of renal cell cancer (RCC) in a Chinese population. METHODS: We genotyped this polymorphism using the TaqMan assay in a case-control study comprised of 710 RCC patients and 760 controls. The logistic regression was used to assess the genetic association with occurrence and progression of RCC. RESULTS: Compared with the genotypes containing G allele (GG and GC), we found a statistically significant increased occurrence of RCC associated with the CC genotype [P = 0.006, adjusted odds ratio (OR) = 1.38, 95% confidence interval (CI) = 1.08-1.76]. The polymorphism was associated with risk of developing advanced stage (OR = 2.02, 95%CI = 1.34-3.07) and moderately differentiated (OR = 1.75; 95%CI = 1.20-2.54) RCC. Furthermore, the patients carrying the CC genotype had a significantly greater prevalence of high clinical stage disease (P(trend) = 0.003). Similar results were also observed when we restricted the analysis to clear cell RCC, a major histological type of RCC. CONCLUSIONS: Our results suggest that the functional -31G>C polymorphism in the promoter of survivin may influence the susceptibility and progression of RCC in the Chinese population. Large population-based prospective studies are required to validate our findings

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion

    Get PDF
    Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10−6). Novel reciprocal case–control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present

    A Surface-Based Approach to DNA Computation

    No full text
    A new model of DNA-based computation is presented. The main difference between this model and that of Adleman is in manipulation of DNA strands that are first immobilized on a surface. This approach greatly reduces losses of DNA molecules during purification steps. A simple, surface-based model of computation is described and it is shown how to implement an exhaustive search algorithm for the SAT problem on this model. Partial experimental progress in solving a 5-variable SAT instance is described, and possible extensions of our model that allow general computations are discussed. Liu, Guo, Corn and Smith are in the Chemistry Department, Condon is in the Computer Sciences Department and Lagally is in the Materials Sciences Department. Email address for further communication: [email protected]. 1 Introduction Adleman [1] and subsequently Lipton [5] described how genetic engineering tools can be used to solve instances of NP-complete combinatorial problems. Their work has led to ho..

    Reduced 15S-Lipoxygenase-2 Expression in Esophageal Cancer Specimens and Cells and Upregulation In Vitro by the Cyclooxygenase-2 Inhibitor, NS398

    No full text
    Alterations in arachidonic acid metabolism are involved in human carcinogenesis. Cyclooxygenase (COX) and lipoxygenase (LOX) are key enzymes in this metabolism. We analyzed the expression of 15S-lipoxygenase-2 (15-LOX-2) mRNA and protein in surgical specimens from normal (N=37) and malignant (63) esophageal tissues using in situ hybridization and immunohistochemistry (IHC), and in normal (1), premalignant (1), and malignant (5) esophageal cell lines using Northern and Western blotting. 15-LOX-2 was expressed in normal esophageal epithelial cells (EECs) at the highest levels, whereas an SV40-immortalized HET-1A line and three of five esophageal cancer cell lines failed to express it at detectable levels. 15-LOX-2 was detected in 76% (28/37) of the normal esophageal mucosae, but only in 46% (29/63) of the cancer specimens using IHC (P<.01). Transient transfection of 15-LOX-2 expression vectors into esophageal cancer cells significantly inhibited the proliferation of 15-LOX-2-negative cancer cells. The COX-2 inhibitor, NS398, induced 15-LOX-2 expression in esophageal cancer cells, which is associated with reduced cell viability. This study demonstrated that 15-LOX-2 expression is lost in esophageal cancers and that the induction of 15-LOX-2 can inhibit cancer cell proliferation. Further investigation of the effects of nonsteroidal anti-inflammatory drugs on 15-LOX-2 expression and apoptosis in esophageal cancer cells may be warranted
    • …
    corecore