69 research outputs found

    Condition number analysis and preconditioning of the finite cell method

    Get PDF
    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitche's method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method

    Phase-field models for brittle and cohesive fracture

    Get PDF
    In this paper we first recapitulate some basic notions of brittle and cohesive fracture models, as well as the phase-field approximation to fracture. Next, a critical assessment is made of the sensitivity of the phase-field approach to brittle fracture, in particular the degradation function, and the use of monolithic versus partitioned solution schemes. The last part of the paper makes extensions to a recently developed phase-field model for cohesive fracture, in particular for propagating cracks. Using some simple examples the current state of the cohesive phase-field model is shown

    Critical time-step size analysis and mass scaling by ghost-penalty for immersogeometric explicit dynamics

    Get PDF
    In this article, we study the effect of small-cut elements on the critical time-step size in an immersogeometric context. We analyze different formulations for second-order (membrane) and fourth-order (shell-type) equations, and derive scaling relations between the critical time-step size and the cut-element size for various types of cuts. In particular, we focus on different approaches for the weak imposition of Dirichlet conditions: by penalty enforcement and with Nitsche's method. The stability requirement for Nitsche's method necessitates either a cut-size dependent penalty parameter, or an additional ghost-penalty stabilization term is necessary. Our findings show that both techniques suffer from cut-size dependent critical time-step sizes, but the addition of a ghost-penalty term to the mass matrix serves to mitigate this issue. We confirm that this form of `mass-scaling' does not adversely affect error and convergence characteristics for a transient membrane example, and has the potential to increase the critical time-step size by orders of magnitude. Finally, for a prototypical simulation of a Kirchhoff-Love shell, our stabilized Nitsche formulation reduces the solution error by well over an order of magnitude compared to a penalty formulation at equal time-step size

    On the numerical integration of isogeometric interface elements

    Get PDF
    Zero-thickness interface elements are commonly used in computational mechanics to model material interfaces or to introduce discontinuities. The latter class requires the existence of a non-compliant interface prior to the onset of fracture initiation. This is accomplished by assigning a high dummy stiffness to the interface prior to cracking. This dummy stiffness is known to introduce oscillations in the traction profile when using Gauss quadrature for the interface elements, but these oscillations are removed when resorting to a Newton-Cotes integration scheme 1. The traction oscillations are aggravated for interface elements that use B-splines or non-uniform rational B-splines as basis functions (isogeometric interface elements), and worse, do not disappear when using Newton-Cotes quadrature. An analysis is presented of this phenomenon, including eigenvalue analyses, and it appears that the use of lumped integration (at the control points) is the only way to avoid the oscillations in isogeometric interface elements. New findings have also been obtained for standard interface elements, for example that oscillations occur in the relative displacements at the interface irrespective of the value of the dummy stiffness

    The cohesive band model: A cohesive surface formulation with stress triaxiality

    Get PDF
    In the cohesive surface model cohesive tractions are transmitted across a two-dimensional surface, which is embedded in a three-dimensional continuum. The relevant kinematic quantities are the local crack opening displacement and the crack sliding displacement, but there is no kinematic quantity that represents the stretching of the fracture plane. As a consequence, in-plane stresses are absent, and fracture phenomena as splitting cracks in concrete and masonry, or crazing in polymers, which are governed by stress triaxiality, cannot be represented properly. In this paper we extend the cohesive surface model to include in-plane kinematic quantities. Since the full strain tensor is now available, a three-dimensional stress state can be computed in a straightforward manner. The cohesive band model is regarded as a subgrid scale fracture model, which has a small, yet finite thickness at the subgrid scale, but can be considered as having a zero thickness in the discretisation method that is used at the macroscopic scale. The standard cohesive surface formulation is obtained when the cohesive band width goes to zero. In principle, any discretisation method that can capture a discontinuity can be used, but partition-of-unity based finite element methods and isogeometric finite element analysis seem to have an advantage since they can naturally incorporate the continuum mechanics. When using interface finite elements, traction oscillations that can occur prior to the opening of a cohesive crack, persist for the cohesive band model. Example calculations show that Poisson contraction influences the results, since there is a coupling between the crack opening and the in-plane normal strain in the cohesive band. This coupling holds promise for capturing a variety of fracture phenomena, such as delamination buckling and splitting cracks, that are difficult, if not impossible, to describe within a conventional cohesive surface model. © 2013 Springer Science+Business Media Dordrecht
    corecore