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Phase-�eld models for brittle and 
ohesive fra
tureJulien Vignollet · Stefan May · René de Borst · Clemens V. Verhoosel
Re
eived: date / A

epted: dateAbstra
t In this paper we �rst re
apitulate some ba-si
 notions of brittle and 
ohesive fra
ture models, aswell as the phase-�eld approximation to fra
ture. Next,a 
riti
al assessment is made of the sensitivity of thephase-�eld approa
h to brittle fra
ture, in parti
ularthe degradation fun
tion, and the use of monolithi
 vspartitioned solution s
hemes. The last part of the pa-per makes extensions to a re
ently developed phase-�eld model for 
ohesive fra
ture, in parti
ular for prop-agating 
ra
ks. Using some simple examples the 
urrentstate of the 
ohesive phase-�eld model is shown.Keywords Phase-�eld models · brittle fra
ture ·
ohesive fra
ture · damage1 Introdu
tionThe modelling of dis
ontinuities, in
luding interfa
es, isof a growing importan
e in the me
hani
s of materials.Basi
ally, two methods exist to 
apture dis
ontinuities:one 
an either distribute them over a �nite width, orhandle them as true dis
ontinuities, i.e. in a dis
retesense.Julien VignolletS
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.ukClemens V. VerhooselDepartment of Me
hani
al EngineeringEindhoven University of Te
hnologyE-mail: C.V.Verhoosel�tue.nl

When a dis
ontinuity has a stationary 
hara
ter,su
h as in grain boundaries, it is fairly straightforwardto des
ribe it in a dis
rete manner, sin
e it is then pos-sible to 
reate a 
onforming mesh su
h that the dis-
ontinuity, either in displa
ements or in displa
ementgradients, is modelled expli
itly. An evolving or movingdis
ontinuity is more di�
ult to 
apture. A possibilityis to adapt the mesh upon every 
hange in the topology,as was done by Ingra�ea and 
o-workers in the 
ontextof linear elasti
 fra
ture me
hani
s [16℄, and later for
ohesive fra
ture [9℄.Another approa
h is to model fra
ture within theframework of 
ontinuum me
hani
s. A fundamentalproblem then emerges, namely that standard 
ontin-uum models do not furnish a non-zero length s
alewhi
h is indispensable for des
ribing fra
ture. To rem-edy this de�
ien
y, regularisation methods have beenproposed, in
luding nonlo
al averaging, the addition ofvis
osity or rate dependen
y, or the in
lusion of 
ou-ple stresses or higher-order strain gradients [5℄. Thee�e
t of these strategies is that the dis
ontinuity istransformed into a 
ontinuous displa
ement distribu-tion. The internal length s
ale is set by the 
onstitutivemodel, and for a su�
iently �ne dis
retisation, the nu-meri
ally 
al
ulated results are obje
tive with respe
tto mesh re�nement. Parti
ularly in damage me
hani
s,gradient approa
hes have gained popularity [20℄.Not unrelated to gradient damage approa
hes arethe phase-�eld models for fra
ture. However, the pointof departure is 
ompletely di�erent. In gradient damagemodels an intrinsi
ally me
hani
al approa
h is adopted,and the damage model is regularised by adding gradi-ents to restore well-posedness of the boundary valueproblem in the post-peak regime. The basi
 idea inphase-�eld models, on the other hand, is to repla
e thezero-width dis
ontinuity by a small, but �nite zone with



2 Julien Vignollet et al.sharp gradients in a mathemati
ally 
onsistent man-ner. Indeed, the latter requirement inevitably leads tospatial derivatives in the energy fun
tional, similar togradient damage models. The �rst attempts to applyphase-�eld models for fra
ture have fo
used on brit-tle fra
ture. Pioneering work has been done in Refer-en
es [6,7,12℄, where a phase-�eld approximation wasproposed for the variational approa
h to brittle fra
-ture. Subsequently, a phase-�eld formulation for brittlefra
ture was derived based on thermodynami
al 
onsid-erations [18,19℄. Appli
ations to dynami
 brittle fra
-ture 
an be found in Referen
es [4,8,15℄.An extension of the variational formulation for brit-tle fra
ture to 
ohesive fra
ture has been 
onsideredin [7℄, and a phase-�eld approximation has been devel-oped in [22℄, with a fo
us on the appli
ation to adhesivefra
ture, i.e. debonding along a prede�ned interfa
e. Aspointed out in Referen
e [22℄ models for brittle and 
o-hesive fra
ture rely on very di�erent 
on
epts, and thedevelopment of a 
ohesive phase-�eld model is a non-trivial task.In this 
ontribution we will �rst review some ba-si
 
on
epts in brittle and 
ohesive fra
ture, and inphase-�eld modelling. Next, we will assess the perfor-man
e of re
ently proposed brittle phase-�eld modelsat the hand of an established example and an elemen-tary one-dimensional bar, where we investigate a num-ber of fa
tors that 
an 
riti
ally a�e
t the performan
eof phase-�eld models in brittle fra
ture. A 
ontribu-tion on how to apply phase-�eld models to propagating
ohesive 
ra
ks follows in Se
tion 4, a

ompanied byrevisiting the one-dimensional example analysed beforeusing a brittle phase-�eld model, and a two-dimensionalexample also analysed in [22℄.2 Fra
ture and phase-�eld models2.1 Brittle and 
ohesive fra
tureWe 
onsider a volume Ω with an internal dis
ontinuityboundary Γd as shown in Figure 1. As a starting pointwe 
onsider the potential energy for the 
ase of a dis-
rete des
ription of brittle fra
ture in the Gri�th sense[12℄:
Ψpot =

∫

Ω

ψe(ε) dV +

∫

Γd

Gc dA (1)with the elasti
 energy density ψe a fun
tion of the in-�nitesimal strain tensor ε. The elasti
 energy density isexpressed by Hooke's law for an isotropi
 linear elasti
material as ψe(ε) = 1
2
λεiiεjj +µεijεij with λ and µ theLamé 
onstants, and the summation 
onvention applies.In Equation (1) the fra
ture energy, i.e. the amount of

Ω
−

Ω
−

x2

x1

Γ
−

d

Γ
+

d
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Ωd

s

n
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Fig. 1: Cohesive surfa
es at an internal dis
ontinuity Γdenergy dissipated upon the 
reation of a unit of fra
-ture surfa
e is denoted by Gc. The potential energy Ψpotgoverns the balan
e between elasti
 energy in the bulkmaterial and the fra
ture energy.Most engineering materials are not perfe
tly brittlein the Gri�th sense, but display some du
tility afterrea
hing the strength limit. In most 
ases, there existsa zone ahead of the 
ra
k tip, in whi
h small-s
ale yield-ing, mi
ro-
ra
king and void initiation, growth and 
o-ales
en
e take pla
e. If this fra
ture pro
ess zone is suf-�
iently small 
ompared to the stru
tural dimensions,brittle fra
ture models 
an be used, but otherwise the
ohesive for
es that exist in this fra
ture pro
ess zonemust be taken into a

ount. The most powerful andnatural way is to use 
ohesive surfa
e models, whi
hwere introdu
ed in [2,11℄.An essential di�eren
e between brittle and 
ohesivefra
ture models is the dependen
e of the fra
ture energyon the 
ra
k opening. The fra
ture energy is releasedonly gradually, and energy dissipation is governed by afra
ture energy fun
tion:
G = G([[u]], κ), (2)whi
h depends on the jump of the displa
ement �eld [[u]]a
ross the dis
ontinuity Γd and on a history parame-ter κ, whi
h obeys the Kuhn-Tu
ker loading/unloading
onditions. The potential energy now takes the form:
Ψpot =

∫

Ω

ψe(ε)dV +

∫

Γd

G([[u]], κ)dA (3)and the 
ohesive tra
tions td are obtained through dif-ferentiation of the fra
ture energy fun
tion with respe
tto the 
ra
k opening:
td =

∂G

∂[[u]]
→ td = td([[u]], κ). (4)



Phase-�eld models for brittle and 
ohesive fra
ture 32.2 Phase �eld approximationsAs the starting point of the derivation of the phase �eldapproximation to fra
ture, we use the Dira
 fun
tion δto relate the in�nitesimal surfa
e area dA at xc ∈ Γd tothe in�nitesimal volume dV of the surrounding body:
dA(xc) =

∫ ∞

−∞

δ (xn) dV, (5)where xn is a 
oordinate in the dire
tion normal tothe 
ra
k, Figure 1. Equation (5) allows for smeareddes
riptions of the fra
ture surfa
e by an approximationof the Dira
 fun
tion. As in Referen
e [4℄ we 
onsiderthe approximated Dira
 fun
tion
δℓ(xn) =

1

2ℓ
exp

(

−
|xn|

ℓ

) (6)with ℓ > 0 a length s
ale parameter. Evidently
∫ ∞

−∞

δℓ(xn)dxn = 1 (7)for arbitrary ℓ. The 
orresponding in�nitesimal fra
turesurfa
e area then follows from
dAℓ(xc) =

∫ ∞

−∞

δℓ (xn) dV. (8)A fundamental problem with the smeared Dira
fun
tion approximation, Equation (6), is that it is notstraightforward to generalise it to more dimensions.Therefore, rather than using this approximate fun
tiondire
tly, it is obtained impli
itly through the solutionof the boundary value problem










d− 4ℓ2 d2d
dx2

n
= 0 xn ∈ R\0

d = 1 xn = 0

d = 0 xn = ±∞

(9)with d(xn) ∈ [0, 1] a s
alar �eld, whi
h equals 1 at the
entre of the dis
ontinuity, i.e. for xn = 0, and van-ishes for xn = ±∞. When d(0) = 1 is not imposed,solution of the di�erential equation (9) is equivalent tominimising
I(d) =

1

4

∫

Ω

(

d2 + 4ℓ2
dd

dxn

)

dV. (10)Sin
e dV = Γdxn, we have
I(e−|xn|/ℓ) = ℓΓ (11)where the 
ra
k surfa
e 
an be expressed through thefollowing volume integral:
Γ =

∫

Ω

γℓdV (12)with the 
ra
k density
γℓ =

(

1

4ℓ
d2 + ℓ||∇d||2

)

, (13)whi
h is the multi-dimensional generalisation of δℓ(xn).

3 Brittle fra
ture3.1 DerivationWe will now brie�y review phase-�eld models developedfor brittle fra
ture. These models originate from thework of Fran
fort, Bourdin and Marigo [6,7,12℄, andhave been revisited and improved re
ently in [1,17,18℄.There is a two-way 
oupling between the regularised
ra
k topology introdu
ed in Se
tion 2 and the me
han-i
al �eld. In a �rst step, the a priori unknown 
ra
ksurfa
e is approximated by the 
ra
k density fun
tion
γℓ, 
f. Equations (12) - (13). This allows us to expressthe work required to 
reate a unit 
ra
k area as a vol-ume integral whi
h depends on the phase �eld variable
d and the fra
ture energy Gc:
∫

Γd

GcdA =

∫

Ω

Gcγℓ(d,∇d) dV. (14)The other step is inspired by 
on
epts developed indamage me
hani
s and relies on the assumption thatthe evolution of the phase �eld is dire
tly related to
ra
k growth. As su
h it 
an be used to model the lossof sti�ness of the bulk of the solid. This is a
hieved bythe introdu
tion of a degradation fun
tion g = g(d),whi
h must satisfy the following properties:










g : [0, 1] → [0, 1]

g′(d) < 0 d ∈ [0, 1[

g′(1) = 0

(15)These properties are mathemati
ally and physi
allymotivated, and are required to ensure damage propaga-tion and to provide an upper bound to the phase �eld
d variable of 1 [18℄. But the a
tual 
hoi
e of this fun
-tion has no physi
al relevan
e. A quadrati
 polynomialis the most widely used one:
g(d) = (1− d)2. (16)More re
ently, Borden [3℄ introdu
ed a 
ubi
 degrada-tion fun
tion:
gs(d) = s((1−d)3−(1−d)2)+3(1−d)2−2(1−d)3. (17)As will be dis
ussed in Se
tion 3.3, the main advan-tage over the quadrati
 fun
tion is that it prevents theemergen
e of spurious damage away from the 
ra
k tip.It also better mimi
s a linear elasti
-brittle behaviour.This is due to the fa
t that lims→0 g

′
s(0) = 0, whi
hprevents damage initiation from the initial in
rease inthe phase �eld. However, Γ -
onvergen
e has so far onlybeen proved for the quadrati
 degradation fun
tion [10℄.In [6℄ the degradation fun
tion g was multiplied withthe elasti
 energy density of the undamaged state, ψ0,
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h that the elasti
 energy density of the damagedstate reads:
ψe(ε, d) = g(d)ψ0(ε). (18)This formulation was subsequently re�ned to a

ountfor the fa
t that damage evolution o

urs under dif-ferent straining modes [1,4,13,17℄, and it was assumedthat the elasti
 energy of the undamaged state 
an beadditively de
omposed into a damaged and an inta
tpart, ψ0 = ψd

0 + ψi
0, so that the degradation fun
tion gonly a
ts on the damaged part:

ψe(ε, d) = g(d)ψd
0 (ε) + ψi

0(ε). (19)This split 
an result from the de
omposition of thestrain tensor into positive and negative strain 
ompo-nents, or from that into spheri
al and deviatori
 strain
omponents. Substituting Equations (14) and (19) intoEquation (1) yields the smeared form of the total po-tential energy for brittle fra
ture:
Ψ =

∫

Ω

g(d)ψd
0 (ε) + ψi

0(ε) + Gcγl(d,∇d) dV. (20)Minimisation of Ψ and introdu
tion of the history�eld H to enfor
e irreversibility [18℄ lead to the strongform:divσ(ε, d) = 0 x ∈ Ω (21a)
σn = t̄ x ∈ Γt (21b)
u = ū x ∈ Γu (21
)
Gc

( d

2ℓ2
− 2∆d

)

=
∂g

∂d
H x ∈ Ω (21d)

∇d · n = 0 x ∈ Γ (21e)where t̄ and ū are the pres
ribed boundary tra
tionsand displa
ements, respe
tively, with Γt ∪ Γu = Γ and
Γt ∩ Γu = ∅. The Cau
hy stress σ and history �eld Hread:
σ(ε, d) = g(d)

∂ψd
0

∂ε
+
∂ψi

0

∂ε
(22)

H(t) = max
t
ψd
0 (t). (23)The weak form of Equation (21) 
an be derived in astandard fashion. The �nite element approximation ofthe domain problem involves the following approxima-tions of the �eld variables and their derivatives:

{

u(x) = Nu(x)u
e

d(x) = Nd(x)d
e







ε(x) = Bu(x)u
e

∂d(x)

∂x
= Bd(x)d

e
(24)In order to 
apture possible snapba
k behaviour,the �nite element formulation was augmented by adissipation-based ar
-length solver [14,21℄. The result-ing set of 
oupled, nonlinear equations is linearised and

solved using a Newton-Raphson iterative s
heme, whi
hgives the iterative 
hange of the state ve
tor at iteration
k:




δd

δu

δλ





k

=





Kdd Kdu 0

Kud Kuu −f̂
ext

0
T

h
T w





−1

k−1





−f
int
d

λf̂ext − f
int
u

−ψ





k−1 (25)with
f
int
d =

∫

Ω

[

Gc

(

1

2l
N

T
dNd + 2lBT

dBd

)

d+
∂g

∂d
HN

T
d

]

dV(26)
f
int
u =

∫

Ω

B
T
u

(

gDd +D
i)
BuudV (27)

ψ =
1

2
f̂
ext (λ0∆u−∆λu0)−∆τ (28)

Kdd =
∂f intd

∂d
Kdu =

∂f intd

∂u
(29)

Kud =
∂f intu

∂d
Kuu =

∂f intu

∂u
(30)

h =
∂ψ

∂u
w =

∂ψ

∂λ
(31)where f̂

ext is the normalised load ve
tor, λ is the loadfa
tor, ∆τ is the in
remental dissipation, and D
d and

D
i 
orrespond to the damaged and inta
t parts ofthe elasti
ity matrix, respe
tively. λ0 and u0 are the
onverged values for the load fa
tor and displa
ementsof the previous in
rement.3.2 Example 1: Single edge not
hed plate in pure shearIn order to verify the implementation of the brittlemodel, a not
hed square plate of unit length, Figure 2,is subje
ted to a shear loading. This ben
hmark testhas been examined for instan
e in [3,18℄. The materialparameters are λ = 121.15MPa, µ = 80.77MPa and

Gc = 2.7 · 10−3N/mm. The bottom edge is �xed, andthe top edge is moved horizontally by ū. The verti
aldispla
ements are prevented on the entire boundary Γ ,in
luding on the initial not
h. Following [18℄, the straintensor was de
omposed into positive and negative 
om-ponents, and irreversibility was enfor
ed by using thehistory �eld H.The results are shown in Figure 3, and were ob-tained using a monolithi
 s
heme, a 100x100-elementmesh of linear quadrilaterals, and a length s
ale ℓ =
0.02mm. The results are in good agreeement with thosein [18℄. This example shows the qualitative 
apabilitiesof the brittle phase �eld formulation: the model is able
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0.5mm

0.5mm

ū

0.5mm

0.5mmFig. 2: Not
hed plate: the top edge is moved horizon-tally by ūto tra
k the evolution of 
ra
ks of arbitrary geometriesand to predi
t the nonlinear for
e-displa
ement rela-tionship until 
omplete failure.
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(a) For
e-displa
ement

(b) Phase �eld 
ontour plotFig. 3: Response of the not
hed plate under shear load-ing

3.3 Example 3: Bar with redu
ed sti�ness in themiddle under tensionNext, the one-dimensional bar of Figure 4 is 
onsidered.The bar has a redu
ed thi
kness in the 
entre and isloaded at the right edge by a for
e λf̂ . The Young'smodulus is E = 10MPa and the fra
ture toughness
Gc = 0.1N/mm. The bar has a length L = 1mm and athi
kness b = 1mm. The length s
ale parameter is 
ho-sen to be ℓ = L

20
. Sin
e the problem is one-dimensional,

ψd
0 = E and ψi

0 = 0, so that the degradation fun
tion
g dire
tly a
ts on the Young's modulus E.

λf̂

h h
2

h

L

L
3

L
3

L
3Fig. 4: 1D tension test for a bar with a redu
ed thi
knessin the 
entreInspe
tion of the strong form, Equation (21d),shows that at the onset of loading the `driving for
e'term g′H = g′ψd

0 (ε) starts to grow, for
ing the phase�eld, and 
onsequently also the 
ra
k density γℓ, to in-
rease along the entire bar. As shown by Equation (14),this pro
ess dissipates energy, whi
h explains the earlydeparture from linearity of the for
e-displa
ement 
urvein Figure 5.Next, the importan
e of using a monolithi
 solverfor this nonlinear problem is studied. For a 
onstantmesh size (150 elements, h = 0.0067mm) and a lengths
ale ℓ = 0.05mm, the response of the system for thestaggered and the monolithi
 s
hemes is 
ompared. Fig-ure 6 shows that the staggered s
heme is very sensitiveto the size of the load in
rements, and has not 
on-verged for the smallest step size. Indeed, the gain inexpended e�ort per load step for the staggered s
hemeis easily 
ompensated by the smaller number of stepsneeded in the monolithi
 s
heme to a
hieve the samea

ura
y.The dependen
e on the length s
ale ℓ is shownin Figure 7 for a 
onstant mesh size (150 elements,
h = 0.0067mm), whi
h respe
ts the rule of thumb ℓ > hto a

urately approximate the 
ra
k topology as pro-posed in [19℄. Clearly, an in
reasing length s
ale resultsin a de
reasing peak for
e. This makes it di�
ult to in-terpret the length s
ale parameter for the brittle model.
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Fig. 5: Mesh re�nement study for a 
onstant lengths
ale ℓ = 0.05mm. The 
ir
les denote loading stepswhere for
e 
ontrol has been used and the triangles de-note the steps where ar
-length 
ontrol has been used
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Fig. 6: Comparison of the monolithi
 and the staggeredapproa
hes for ℓ = 0.05mm with a 
onstant mesh size(150 elements, h = 0.0067mm)On one hand, ℓ has been introdu
ed on purely mathe-mati
al ground, Se
tion 2, whi
h is independent fromthe me
hani
al �eld problem. On the other hand, whenlinking the phase �eld and the me
hani
al �eld, thelength s
ale parameter seems to behave like a materialparameter, 
f. [1,4℄.From Figures 5 - 7 it appears that the brittle modeldoes not exhibit linear elasti
 behaviour prior to soft-ening. Instead, the 
urves show nonlinearity from thevery beginning. Therefore, a 
ubi
 degradation fun
-tion has been proposed in [3℄, whi
h results in a linearbehaviour up to the peak for
e. The drawba
k of thisfun
tion is that an additional parameter s is introdu
ed,
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Fig. 7: In�uen
e of the length s
ale parameter ℓ for a
onstant mesh size (150 elements, h = 0.0067mm)
f. Equation (17). The quadrati
 and the 
ubi
 degrada-tion fun
tions are 
ompared in Figure 8 using di�erentparameters s. For s → 0 the peak for
e 
onverges to aunique value [3℄.
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Fig. 8: Comparison of the quadrati
 and 
ubi
 degra-dation fun
tionsFinally, the approximated 
ra
k length Γℓ is exam-ined using Equation (12). The relative error is givenby
ΓE =

Γℓ − Γ

Γ
, (32)where the exa
t 
ra
k length is Γd = h/2 = 0.5mm. AsFigure 9 shows, this is a rather 
rude approximationdue to the fa
t that the model predi
ts a damaged zonewhi
h spans the entire weakened part of the bar. Thetenden
y that is displayed by the 
ir
les vs the trian-gles in Figure 9 suggests that this 
an be improved by
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ohesive fra
ture 7redu
ing the length of the bar in the 
entre. However,there is a 
on
ern that upon a redu
tion of the lengths
ale, the approximation for the 
ra
k length deterio-rates (although ℓ≫ h).

10
−3

10
−2

10
−1

10
0

Mesh size h in mm

E
rr

o
r
Γ

E

ℓ = 0.02500mm, 1:1:1 ℓ = 0.01250mm, 1:1:1 ℓ = 0.00625mm, 1:1:1

ℓ = 0.02500mm, 2:1:2 ℓ = 0.01250mm, 2:1:2 ℓ = 0.00625mm, 2:1:2

Fig. 9: Error ΓE for the �nal approximated 
ra
k length
Γl. The 
ir
les denote a bar with a ratio 1:1:1, the tri-angles denote a bar with a ratio 2:1:2
4 Cohesive fra
tureThe obje
tive of this se
tion is to revisit the phase-�eldmodel for 
ohesive fra
ture proposed in Referen
e [22℄and to show some further developments that allow forthe modelling of propagating 
ra
ks. Firstly, the mainfeatures of the model are summarised. Re�nements andmodi�
ations are presented next, followed by some ex-amples.4.1 The me
hani
al �eld problemSimilar to the brittle model, the 
oupling between thephase �eld and the me
hani
al �eld problems requiresthe introdu
tion of phase-�eld quantities in the poten-tial in order to smear out the 
ra
k surfa
e.Like the brittle model presented in Se
tion 3, thetopology of the smeared 
ra
k is introdu
ed in the ex-pression of the energy dissipation D, and the se
ondterm of Equation (3) is rewritten as:
D =

∫

Γ

G([[u]], κ)dA =

∫

Ω

G([[u]], κ)γℓ(d,∇d)dV (33)with G([[u]], κ) the fra
ture energy fun
tion. Equa-tion (33) transforms a dis
rete 
ra
k into a 
ra
k thatis smeared over a �nite length orthogonal to the 
ra
k

surfa
e, see also Figure 10. Formally, the smeared 
o-hesive zone is de�ned by d(x) > 0, but in pra
ti
e thisis relaxed and:
Γℓ = {x ∈ Ω|d(x) > ǫ} (34)is taken to de�ne the smeared 
ohesive 
ra
k, with ǫ asmall toleran
e. A

ording to Equation (33), γℓ 
an beinterpreted as the fun
tion that 
on�nes the dissipationof energy to the 
ohesive zone.

Fig. 10: Γd represents the dis
rete 
ohesive zone andthe 
entre of the smeared 
ohesive zone ΓℓThe de�nition of a dis
rete quantity like a jump isnon-trivial in smeared models. For this purpose an aux-iliary �eld, v, was introdu
ed in Referen
e [22℄, and isalso used here:
[[u]](xc) ≈

∫ ∞

−∞

v(x)δℓdxn. (35)The auxiliary �eld thus approximates the 
ra
k openingat any point xc ∈ Γd, i.e. on the dis
rete 
ra
k surfa
e
Γd. Further, for any point x ∈ Γℓ, with Γℓ the area overwhi
h the dis
rete 
ra
k has been distributed, it is pos-sible to �nd the nearest point xc ∈ Γd. Requiring thatthe auxiliary �eld v remains 
onstant in the dire
tionnormal to the 
ra
k, i.e.
∂v

∂xn
= 0 (36)we obtain that

v(x) = v
(

xc + xnn(xc)
)

= v(xc) (37)with n the normal to the 
ra
k, and the displa
ementjump 
an be approximated as:
[[u]](xc) ≈ v(xc)

∫ ∞

−∞

δℓdxn = v(xc). (38)
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onsequen
e of the introdu
tion of the auxiliary�eld, the fra
ture energy fun
tion be
omes
G([[u]], κ) ≈ G(v, κ) (39)and the tra
tion in the 
ohesive zone reads:
td(v, κ) =

∂G(v, κ)

∂v
while ∫ ∞

0

td(v, κ)dv = Gc.(40)The se
ond step of the 
oupling requires the deriva-tion of the elasti
 energy density fun
tion ψe of thedamaged model that takes into a

ount 
ra
k growth.It relies on the assumption that the total strain ε 
anbe split into an elasti
 term and a term that a

ountsfor damage:
ε = ε

e + ε
d (41)su
h that

ψe(ε, d) = ψe(εe) = ψe(ε− ε
d). (42)This split 
an be derived expli
itly from energy 
on-siderations. On one hand, the se
ond prin
iple of ther-modynami
s gives:

0 ≤ Ḋ = σij ε̇ij − ψ̇e

= σij(ε̇
e
ij + ε̇dij)−

∂ψe

∂εeij
ε̇eij

= σij(ε̇
e
ij + ε̇dij)− σij ε̇

e
ij

= σij ε̇
d
ij . (43)On the other hand, use of Equation (33) allow the ex-pli
it evaluation of the energy dissipation rate:

Ḋ =
d

dt

(

γℓ(d)G(v)
)

= γℓtdv̇ + G
∂γℓ
∂d

ḋ (44)where v̇ 
ould have equally been repla
ed by [[u]]. The�rst term in Equation (44) measures the in
rement ofenergy dissipated as a result of further opening the ex-isting 
ra
k by an in
rement v̇. The se
ond term 
orre-sponds to the energy dissipated through the extensionof the 
ohesive zone by an in
rement ḋ. Under the hy-pothesis that the smeared jump v is initially zero in thenewly 
reated 
ohesive zone, it 
an be assumed that ad-van
ing the 
ohesive zone as a result of a 
hange ḋ inthe phase �eld, is not a

ompanied by any dissipationof energy as G(0) = 0. Under this assumption and 
om-bining Equations (43) and (44), the part of the totalstrain ε that purely results from damage evolution 
anbe evaluated as:
ε̇
d = γℓ sym(v̇ ⊗ n). (45)

Consequently, the elasti
 strain reads:
ε
e = ∇s

u− γℓ sym(v ⊗ n), (46)with ∇s the symmetrised gradient operator. If the dis-pla
ement, the auxiliary and the phase �elds are all ap-proximated by pie
ewise linear fun
tions, the �rst termin Equation (46) is 
onstant in the one-dimensional
ase, while the se
ond term is a quadrati
 polynomial.It was reported in [22℄ that this order mismat
h leadsto stress os
illations, and it was suggested that the aux-iliary and the phase �elds are approximated with linearfun
tions, while the displa
ements are approximatedusing 
ubi
 polynomials.Finally, the smeared form of the total potential en-ergy for 
ohesive fra
ture be
omes
Ψ =

∫

Ω

(

ψe(εe) + γℓ G(v) +
α

2

∣

∣

∣

∣

∂v

∂xn

∣

∣

∣

∣

2
)

dV (47)where a penalty term has been added to enfor
e theauxiliary �eld v to remain 
onstant along the normalof the 
ra
k.4.1.1 Dis
retised �eldsWith the potentials of the phase �eld, Equation (10),and the me
hani
al �eld, Equation (47), at hand, wesolve them in a staggered manner, similar to [22℄. Thedis
rete phase �eld problem is solved �rst, in order toinitialise the topology of the smeared 
ohesive 
ra
k.This solution is used as an input to solve the dis
reteme
hani
al problem. The algorithmi
 �ow is shown inAlgorithm 1, while details regarding the me
hani
alproblem are derived below.The governing equations of the me
hani
al prob-lem are obtained by minimising the potential, Equa-tion (47):divσ = 0 x ∈ Ω (48a)
σσσn = t̄ x ∈ Γ (48b)
γℓ
(

td − σn
)

= α
∂2v

∂x2n
x ∈ Γℓ (48
)

∂v

∂xn
= 0 x ∈ ∂Γℓ (48d)Note that in the momentum balan
e, Equation (48a),the Cau
hy stress σ is a fun
tion of the elasti
 strainonly. Furthermore, the 
ra
k density fun
tion γℓ a
tsas a swit
h that enfor
es the 
ohesive law in Equa-tion (48
).
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ohesive fra
ture 9As for the brittle model, the weak form is obtainedfrom Equation (48). Approximation of the �eld vari-ables and their derivatives as
{

u(x) = Nu(x)u
e

v(x) = Nv(x)v
e

{

ε(x) = Bu(x)u
esym(v ⊗ n) = Bv(x)v

e (49)
∂v

∂xn
= Gv(x)v

e (50)results in a nonlinear set of equations whi
h 
an belinearised and solved using a Newton-Raphson iteratives
heme, again enhan
ed by the dissipation-based ar
-length method [14,21℄. The update of the state ve
torat iteration k 
an be derived as:




δu

δv

δλ





k

=





Kuu Kuv −f̂
ext

Kvu Kvv 0

h
T

0
T w





−1

k−1





λf̂ext − f
int
u

−f
int
v

−ψ





k−1 (51)with:
f
int
v =

∫

Ω

−γℓB
T
v CBuu+ γ2ℓB

T
v CBvv

+γℓN
T
v td + αGT

v Gvv dV (52)
f
int
u =

∫

Ω

B
T
uCBuu− γℓB

T
uCBvvdV (53)

ψ =
1

2
f̂
ext (λ0∆u−∆λu0)−∆τ (54)

Kvv =
∂f intv

∂v
Kvu =

∂f intv

∂u
(55)

Kuv =
∂f intu

∂v
Kuu =

∂f intu

∂u
(56)

h =
∂ψ

∂u
w =

∂ψ

∂λ
. (57)4.2 Cra
k propagationIn Referen
e [22℄, the position and growth of the phase�eld was 
ontrolled by a driving for
e term

F = C
8ℓ2

h2
δd(xn) (58)whi
h results from the addition of a penalty term ontothe weak form of the phase �eld problem, with C thepenalty weight and δd(xn) is the Dira
 fun
tion 
entredat Γd. A 
ra
k set S was then de�ned, whi
h is a listof Gauss points where d = 1. This approa
h has somedisadvantages, sin
e it not only requires an additionalparameter and more 
omputations in order to evaluate

the driving for
e, but linear shape fun
tions that en-for
e d = 1 at a Gauss point 
an lead to nodal phase�eld variables that lo
ally ex
eed 1.Here, we propose to build the 
entre of the 
ohesivezone Γd with a 
ra
k set S whi
h only 
ontains nodes.Consequently, the driving for
e F is no longer required.Upon minimisation of the potential of the phase-�eldpotential, Equation (10), the strong form










d− 4ℓ2∇2d = 0 x ∈ Ω

d(x) = 1 x ∈ Γd

∇d · n = 0 x ∈ Γ

(59)is obtained. Equation (59) implies that the 
entre ofthe 
ohesive zone Γd is built using Diri
hlet boundary
onditions.Next, the weak form of Equation (59) 
an be derivedand 
an be dis
retised via:






d(x) = Nd(x)d
e

∂d(x)

∂x
= Bd(x)d

e.
(60)The linear phase �eld problem is then solved for theDiri
hlet 
onditions d̄ = [1 . . . 1]T pres
ribed at thenodes in the 
ra
k set S:

[

Kdd

]

[

d
e

d̄

]

= f
ext
d = 0 (61)with

Kdd =

∫

Ω

Gc
1

2ℓ
N

T
dNd + 2ℓBT

dBddV. (62)Finally, the 
ra
k density is evaluated a

ording to:
γℓ = d

T( 1

4ℓ
N

T
dNd + ℓBT

dBd

)

d. (63)At the beginning of the simulation, the 
ra
k set S0is an inventory of nodes lo
ating a potential initial de-fe
t. For the �rst iteration (j = 0) of any subsequentin
rement i, the 
ra
k set is initially frozen to the pre-viously 
onverged state: Si
j=0 = Si−1�nal. The me
hani
al�eld problem is solved iteratively until a balan
e hasbeen obtained between the internal and the externalloads. The nu
leation 
riterion is then evaluated withthe updated displa
ement and jump �elds {ue,ve}ij=0.As in [22℄, the maximum prin
ipal stress is used as thepropagation 
riterion. This has the additional bene�tof dire
tly providing the 
ra
k normal ve
tor.When the major prin
ipal stress σ1 ex
eeds thefra
ture strength tu, the 
ra
k must be advan
edto dissipate more energy. The Gauss point gpj =

maxx∈gp (σ1
j (x)

) is identi�ed, and the node nj 
losestto gpj is added to the 
ra
k set, whi
h be
omes Si
j=1.Con�ning the 
ra
k set to nodes 
an result in a mesh
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e. This is 
ir
umvented by shifting the nodenj to the lo
ation of gpj . The phase-�eld problem isthen solved and the 
ra
k density is updated. The me-
hani
al �eld problem must be updated for the samein
rement i with the new 
ra
k set Si
j=1.On
e equilibrium has been obtained, the nu
leation
riterion is 
he
ked again. If it is not violated, one 
anadvan
e to the next in
rement. Otherwise a new phase-�eld distribution must be obtained. The pro
edure isrepeated until the loads are in equilibrium and the nu-
leation 
riteria is violated nowhere.4.3 Example 1: Propagating 
ra
k along a prede�nedpathThe delamination peel test of [22℄ is revisited with thedevelopments presented in the previous se
tion. The ge-ometry of the beam is depi
ted in Figure 11 and theelasti
 parameters are E = 100MPa and ν = 0.3. Thefra
ture strength and energy are taken as tu = 1MPaand Gc = 0.1N/mm.

9mm 1mm

0.5mm

0.5mm

ū

ūFig. 11: Geometry of the propagating 
ra
k exampleThe de
ohesion relation is 
hosen as
td(v) =

{

tu + kv v ≤ 0

tuexp(− tu
Gc
v
)

v > 0
(64)where k prevents 
ra
k interpenetration. Herein, k =

1 · 104MPa/mm has been used. The toleran
e ǫ, thatde�nes the 
ohesive zone, Equation (34), is taken as 1 ·
10−2. The penalty parameter that enfor
es the 
onstantjump in the dire
tion normal to the 
ra
k is taken as
α = tu.The purpose of this test is to demonstrate the abilityof the 
urrent formulation to model a propagating 
ra
kalong a prede�ned path. Hen
e, instead of allowing the
ra
k to 
urve away from the 
entre line of the beam, itis for
ed to remain straight and to grow along the 
en-tre line. Consequently, the 
ra
k normals are prede�nedand set su
h that n = {0, 1}.In the following, we 
onsider:

� two mesh sizes: a 
oarse mesh with h = 0.1mm anda �ner mesh with h = 0.05mm. For both meshes,the length s
ale is taken as ℓ = 0.1mm.� two mesh types: stru
tured and unstru
tured, Fig-ures 12a and 12d, respe
tively. The unstru
turedmeshes are generated by a routine that shifts thenodes of the stru
tured mesh by a random amountin the interval [−0.1h; 0.1h]. To further perturb thestru
ture of the mesh, this routine 
an be run su
-
essively n times, whi
h will be referred to as `n-loops'.� two s
hemes: in the 
onstant mesh 
ase, the nodal
oordinates are frozen for the entire simulation. Forthe moving mesh, the moving node algorithm de-s
ribed in Se
tion 4.2 is used.In order to allow for a fair 
omparison betweenthe various 
ases, we 
onsistently enfor
e nodes in the
ra
kset to be lo
ated on the 
entre line of the beam.This means that for the moving mesh s
heme, the mov-ing nodes 
an only align laterally with the x-
oordinateo�ending Gauss point. For the stru
tured mesh, nodes
annot move verti
ally, see Figure 12
. For the unstru
-tured mesh, nodes are for
ed to move to the 
entre lineof the beam, Figure 12d.
(a) Stru
tured mesh, initial not
h(b) Stru
tured mesh, �xed nodes(
) Stru
tured mesh, moving nodes(d) Unstru
tured mesh, moving nodes

Fig. 12: Phase �eld distribution: at the beginning ofthe simulation (a), and for ū = 1.5mm (b)�(d). 100×10elements (h ≈ 0.1mm).It is observed from Figure 13 that for a given exter-nal load, the model evaluates the same 
ohesive zone
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ohesive fra
ture 11for a stru
tured mesh with �xed nodes, as well as fora stru
tured and an unstru
tured mesh with movingnodes. The for
e-displa
ement response of the modelfor the various 
ases is shown in Figure 13. We �rst notethat for sake of 
larity, the results for the stru
tured �nemesh � with 
onstant and with moving nodes � are notpresented as they are very 
lose to those of the 
oarsemesh. This 
on�rms that the shown results representthe 
onverged solution. Figure 13 also shows that themodel is able to predi
t the 
riti
al load and the �rstpart of the softening regime for unstru
tured meshes,even if thereafter the 
urves diverge progressively. Thisphenomenon is more marked when the stru
ture of themesh is perturbed more strongly.
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Structured, constant mesh; 10x100

Structured, moving mesh; 10x100

Unstructured, 1 loop; 10x100

Unstructured, 2 loops; 10x100

Unstructured, 1 loop; 20x200

Unstructured, 2 loops; 20x200

Fig. 13: For
e-displa
ement relation for various meshesand di�erent numbers of perturbation loopsThe slow departure from the 
onverged solution forthe stru
tured meshes 
an be explained by 
onsideringthe elasti
 strain distribution εeyy in the 
ohesive zone.As shown in Figure 14a for ū = 0.75mm, a wavy pat-tern in the elasti
 strain evolves in the wake of the 
ra
ktip, see also Figure 14b. These patterns are not observedfor the stru
tured mesh. These strain os
illations tendto lo
k the elasti
 strains, and therefore the stressesin the 
ohesive zone, whi
h 
auses the sti�er responseobserved in Figure 13. This phenomenon 
an have sev-eral 
auses. The elementary method used to generateunstru
tured meshes resulted in a relatively poor meshquality. The use of 
ubi
 Lagrange fun
tions for thedispla
ements 
an be another reason. Potential solu-tions are to use mesh improvement te
hnologies, stresssmoothing, or the use of splines (isogeometri
 analysis).

(a) ū = 0.75mm(b) ū = 1.5mm
Fig. 14: Contour plot of the elasti
 strain εeyy for theunstru
tured 100×10mesh after two perturbation loops4.4 Example 2: Bar with redu
ed sti�nessThe 1D bar problem of Se
tion 3.3 is revisited, now us-ing the 
ohesive model, but with the same dimensionsand elasti
 properties. A stri
tly de
aying tra
tion re-lation is used:
td = tuexp(− tu

Gc
[[u]]

)

≈ tuexp(− tu
Gc
v

) (65)with the fra
ture strength tu = 2MPa. Following [22℄the penalty parameter that enfor
es the 
onstant jumpin the dire
tion normal to the 
ra
k is 
hosen as α = tu.For
e 
ontrol is applied up to the peak load, where thesolver swit
hes to the dissipative ar
-length method. Intheory, all Gauss points in the area with redu
ed sti�-ness rea
h the fra
ture strength in the same in
rement.However, as fra
ture is expe
ted to o

ur lo
ally, only asingle node is added to the 
ra
k set. As des
ribed be-fore, the mesh is modi�ed by shifting the node 
losestto this Gauss point.First, the in�uen
e of the mesh size is investigated.Figure 15 shows that in the snapba
k regime, 
onver-gen
e is obtained with mu
h less elements than withthe brittle fra
ture model for ℓ = 0.05mm.Next, the impa
t of the length s
ale parameter ℓ isassessed. From Figure 16 we observe that the lengths
ale parameter ℓ has no in�uen
e on the linear elasti
regime, and neither on the peak load. A limited in�u-en
e is observed in the post-peak regime. This meansthat, at varian
e with the brittle 
ase, the in�uen
e of
ℓ is stri
tly 
on�ned to the topologi
al approximationand does not govern the overall me
hani
al behaviourof the stru
ture. It is also noted that the response isperfe
tly linear up to the maximum load.Finally, we have investigated the approximated
ra
k length Γℓ at failure, evaluated using quation (12).The exa
t 
ra
k length is Γd = h/2 = 0.5mm andthe relative error is given by Equation (32). Figure 17shows, for three di�erent length s
ales, that the 
ra
k
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Fig. 15: Mesh re�nement for 
onstant length s
ale pa-rameter ℓ = 0.05mm
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Fig. 16: In�uen
e of length s
ale parameter ℓ for 
on-stant number of 300 elements. The results for ℓ =
0.025mm and ℓ = 0.0125mm almost 
oin
ide.length approximation 
onverges upon mesh re�nement(although denser meshes would be required for ℓ =

0.0125mm), but also that the quality of the approxi-mation in
reases as the length s
ale de
reases. A 
on-vergen
e study in Referen
e [19℄ indi
ates that, for thephase �eld problem only, this observation is only validfor the dis
retised problem when the length s
ale islarger than the mesh size, whi
h seems to be in agree-ment with the 
urrent results.5 Con
luding remarksThe present investigation 
on�rms that phase �eldmodels give qualitatively good results for brittle fra
-ture, both for mode-I and for mode-II problems [18,
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Fig. 17: Error ΓE for the �nal 
ra
k length Γℓ19℄. However, the model 
an be sensitive. Using a sim-ple one-dimensional bar with a defe
t in the 
entre part,it was shown that the 
hoi
e of the degradation fun
-tion may 
onsiderably in�uen
e the results, as does the
hoi
e of the length s
ale parameter ℓ. The latter ob-servation makes it di�
ult to interpret the length s
aleparameter for the brittle phase �eld model. Its intro-du
tion on mathemati
al grounds would point to a pa-rameter for the phase �eld that does not in�uen
e theme
hani
al �eld problem, but this is not 
on�rmed ina
tual 
omputations in whi
h the phase �eld and theme
hani
al �eld are lined [1,4℄. Another �nding is thatsolving the phase �eld and the me
hani
al �eld usinga monolithi
 s
heme leads to a faster 
onvergen
e withrespe
t to mesh re�nement, 
ompared to a partitionedsolution strategy.In the last part of the paper the 
ohesive phase �eldapproa
h [22℄ is revisited and further elaborated, in par-ti
ular for propagative 
ohesive 
ra
ks. From the theo-reti
al side, a new, thermodynami
ally motivated wayto de
ompose the strain �eld into an elasti
 
ontribu-tion and a smeared 
ra
k 
ontribution has been pro-posed. From the implementation side, a 
ra
k set hasbeen suggested that only 
ontains nodes, rather than in-tegration points. To obviate loss of �exibility and ame-liorate possible 
ra
k bias, nodes are allowed to movetowards integration points were the fra
ture 
riterionhas been violated (r-adaptivity). An advantage is thata driving for
e term [22℄ is not needed, thereby redu
-ing the number of numeri
al parameters. Example 
al-
ulations � with stru
tured and unstru
tured meshes,and with �xed and moving nodes � on adhesive 
ra
kpropagation in a 
antilever beam show the potential ofthe method, although the extension to arbitary 
ra
kpropagation remains a 
hallenge. Finally, revisiting theone-dimensional example used in the beginning for brit-
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k propagation shows that far less elements arenow needed to a
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e, and, more impor-tantly, that the results are now virtually insensitive tothe value of the length s
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14 Julien Vignollet et al.For In
rement i doInitialise- The external loading: either ū, λ̄ or ∆τ ;- The initial 
ra
k set: Si
j=0 = Si−1�nal ;- The internal for
e ve
tors f intv and f intu ;- The residual: R0 = [fextv fextu ]T −

[

f intv f intu

]T;Do Cra
kset loop j while Sj+1 6⊂ SjDo Iterative Newton loop k for the me
hani
al �eld problem while ||R‖ > ε
ra
k opening ;Evaluate- The global sti�ness matri
es Kvv , Kvu, Kuv , Kuu ;- The in
remental state ve
tor [δv δu]T
k

;Update- The state ve
tor [v u]T
k

;- The internal for
e ve
tors f intv and f intu ;- The residual Rk = [fextv fextu ]Tk −
[

f intv f intu

]T
k
;endif σσσ1

j > tu thenExtension of the 
ohesive zone ;Evaluate- Prin
ipal stresses σ1
j and σ2

j ;- Prin
ipal dire
tions n1 and n2;Lo
ate- The Gauss point gpj = max
x∈gp (σ1

j (x)
) ;- The 
losest node nj to gpjUpdate- The mesh: move Nj to the lo
ation of gpj ;- The 
ra
k set Sj with nj ;Solve- The phase �eld problem with the new boundary 
onditions ;Update- The 
ra
k density fun
tional γℓ ;- The normal at Gauss points in the 
ohesive zone Γℓ ;endendend Algorithm 1: Algorithm for the 
ohesive model


