The

University

yo, Of
Sheffield.

This is a repository copy of Phase-field models for brittle and cohesive fracture.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100674/

Version: Accepted Version

Article:

Vignollet, J., May, S., de Borst, R. orcid.org/0000-0002-3457-3574 et al. (1 more author)
(2014) Phase-field models for brittle and cohesive fracture. Meccanica, 49 (11). pp.
2587-2601. ISSN 0025-6455

https://doi.org/10.1007/s11012-013-9862-0

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Noname manuscript No.
(will be inserted by the editor)

Phase-field models for brittle and cohesive fracture

Julien Vignollet -

Received: date / Accepted: date

Abstract In this paper we first recapitulate some ba-
sic notions of brittle and cohesive fracture models, as
well as the phase-field approximation to fracture. Next,
a critical assessment is made of the sensitivity of the
phase-field approach to brittle fracture, in particular
the degradation function, and the use of monolithic vs
partitioned solution schemes. The last part of the pa-
per makes extensions to a recently developed phase-
field model for cohesive fracture, in particular for prop-
agating cracks. Using some simple examples the current
state of the cohesive phase-field model is shown.

Keywords Phase-field models - brittle fracture -

cohesive fracture - damage

1 Introduction

The modelling of discontinuities, including interfaces, is
of a growing importance in the mechanics of materials.
Basically, two methods exist to capture discontinuities:
one can either distribute them over a finite width, or
handle them as true discontinuities, i.e. in a discrete
sense.
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When a discontinuity has a stationary character,
such as in grain boundaries, it is fairly straightforward
to describe it in a discrete manner, since it is then pos-
sible to create a conforming mesh such that the dis-
continuity, either in displacements or in displacement
gradients, is modelled explicitly. An evolving or moving
discontinuity is more difficult to capture. A possibility
is to adapt the mesh upon every change in the topology,
as was done by Ingraffea and co-workers in the context
of linear elastic fracture mechanics [16], and later for
cohesive fracture [9].

Another approach is to model fracture within the
framework of continuum mechanics. A fundamental
problem then emerges, namely that standard contin-
uum models do not furnish a non-zero length scale
which is indispensable for describing fracture. To rem-
edy this deficiency, regularisation methods have been
proposed, including nonlocal averaging, the addition of
viscosity or rate dependency, or the inclusion of cou-
ple stresses or higher-order strain gradients [5]. The
effect of these strategies is that the discontinuity is
transformed into a continuous displacement distribu-
tion. The internal length scale is set by the constitutive
model, and for a sufficiently fine discretisation, the nu-
merically calculated results are objective with respect
to mesh refinement. Particularly in damage mechanics,
gradient approaches have gained popularity [20].

Not unrelated to gradient damage approaches are
the phase-field models for fracture. However, the point
of departure is completely different. In gradient damage
models an intrinsically mechanical approach is adopted,
and the damage model is regularised by adding gradi-
ents to restore well-posedness of the boundary value
problem in the post-peak regime. The basic idea in
phase-field models, on the other hand, is to replace the
zero-width discontinuity by a small, but finite zone with
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sharp gradients in a mathematically consistent man-
ner. Indeed, the latter requirement inevitably leads to
spatial derivatives in the energy functional, similar to
gradient damage models. The first attempts to apply
phase-field models for fracture have focused on brit-
tle fracture. Pioneering work has been done in Refer-
ences [6,7,12], where a phase-field approximation was
proposed for the variational approach to brittle frac-
ture. Subsequently, a phase-field formulation for brittle
fracture was derived based on thermodynamical consid-
erations [18,19]. Applications to dynamic brittle frac-
ture can be found in References [4,8,15].

An extension of the variational formulation for brit-
tle fracture to cohesive fracture has been considered
in 7], and a phase-field approximation has been devel-
oped in [22], with a focus on the application to adhesive
fracture, i.e. debonding along a predefined interface. As
pointed out in Reference [22] models for brittle and co-
hesive fracture rely on very different concepts, and the
development of a cohesive phase-field model is a non-
trivial task.

In this contribution we will first review some ba-
sic concepts in brittle and cohesive fracture, and in
phase-field modelling. Next, we will assess the perfor-
mance of recently proposed brittle phase-field models
at the hand of an established example and an elemen-
tary one-dimensional bar, where we investigate a num-
ber of factors that can critically affect the performance
of phase-field models in brittle fracture. A contribu-
tion on how to apply phase-field models to propagating
cohesive cracks follows in Section 4, accompanied by
revisiting the one-dimensional example analysed before
using a brittle phase-field model, and a two-dimensional
example also analysed in [22].

2 Fracture and phase-field models
2.1 Brittle and cohesive fracture

We consider a volume {2 with an internal discontinuity
boundary Iy as shown in Figure 1. As a starting point
we consider the potential energy for the case of a dis-
crete description of brittle fracture in the Griffith sense
[12]:

Yoot = / Y(e)dV + G.dA (1)
¢ Iy
with the elastic energy density ¢ a function of the in-
finitesimal strain tensor . The elastic energy density is
expressed by Hooke’s law for an isotropic linear elastic
material as 1°(e) = &g + peijeq; with A and p the
Lamé constants, and the summation convention applies.
In Equation (1) the fracture energy, i.e. the amount of

Fig. 1: Cohesive surfaces at an internal discontinuity Iy

energy dissipated upon the creation of a unit of frac-
ture surface is denoted by G.. The potential energy ¥, ot
governs the balance between elastic energy in the bulk
material and the fracture energy.

Most engineering materials are not perfectly brittle
in the Griffith sense, but display some ductility after
reaching the strength limit. In most cases, there exists
a zone ahead of the crack tip, in which small-scale yield-
ing, micro-cracking and void initiation, growth and co-
alescence take place. If this fracture process zone is suf-
ficiently small compared to the structural dimensions,
brittle fracture models can be used, but otherwise the
cohesive forces that exist in this fracture process zone
must be taken into account. The most powerful and
natural way is to use cohesive surface models, which
were introduced in [2,11].

An essential difference between brittle and cohesive
fracture models is the dependence of the fracture energy
on the crack opening. The fracture energy is released
only gradually, and energy dissipation is governed by a
fracture energy function:

g =G([u], ), (2)

which depends on the jump of the displacement field [u]
across the discontinuity Iy and on a history parame-
ter , which obeys the Kuhn-Tucker loading/unloading
conditions. The potential energy now takes the form:

o = / @)V + [ G([u], #)dA (3)
2 Iy

and the cohesive tractions t4 are obtained through dif-
ferentiation of the fracture energy function with respect
to the crack opening:

oG

tg = ——

8[[u]] — tg= td([[u]], Ii). (4)
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2.2 Phase field approximations

As the starting point of the derivation of the phase field
approximation to fracture, we use the Dirac function §
to relate the infinitesimal surface area dA at x. € I'y to
the infinitesimal volume dV of the surrounding body:

dA(x,) = /_OO 5 (2n) AV, (5)

where z,, is a coordinate in the direction normal to
the crack, Figure 1. Equation (5) allows for smeared
descriptions of the fracture surface by an approximation
of the Dirac function. As in Reference [4] we consider
the approximated Dirac function

o) = gyew (-7 (6)

with £ > 0 a length scale parameter. Evidently

/_ " e )dan = 1 (7

for arbitrary ¢. The corresponding infinitesimal fracture
surface area then follows from

dAz(XC) = /_OO 5g (:En) dV (8)

A fundamental problem with the smeared Dirac
function approximation, Equation (6), is that it is not
straightforward to generalise it to more dimensions.
Therefore, rather than using this approximate function
directly, it is obtained implicitly through the solution
of the boundary value problem

d—40$d =0 2, €R\0

d=1 Tn =0 9)

d=0 Ty, = Foo
with d(z,,) € [0,1] a scalar field, which equals 1 at the
centre of the discontinuity, i.e. for x, = 0, and van-
ishes for z,, = +o0o. When d(0) = 1 is not imposed,

solution of the differential equation (9) is equivalent to
minimising

1 dd
I(d) = - 24402 — ) dv. 1
(d) 4/Q<d+£dxn) V. (10)
Since dV = I'dx,,, we have
I(e~l=nl/ty =y (11)

where the crack surface can be expressed through the
following volume integral:

= / eV (12)
2
with the crack density
1
= ( =d* + (| Vd|? 1
= (g + v ). (13)

which is the multi-dimensional generalisation of d¢(x,).

3 Brittle fracture
3.1 Derivation

We will now briefly review phase-field models developed
for brittle fracture. These models originate from the
work of Francfort, Bourdin and Marigo [6,7,12], and
have been revisited and improved recently in [1,17,18].

There is a two-way coupling between the regularised
crack topology introduced in Section 2 and the mechan-
ical field. In a first step, the a priori unknown crack
surface is approximated by the crack density function
~e, cf. Equations (12) - (13). This allows us to express
the work required to create a unit crack area as a vol-
ume integral which depends on the phase field variable
d and the fracture energy G.:

Iy 2

The other step is inspired by concepts developed in
damage mechanics and relies on the assumption that
the evolution of the phase field is directly related to
crack growth. As such it can be used to model the loss
of stiffness of the bulk of the solid. This is achieved by
the introduction of a degradation function g = g¢(d),
which must satisfy the following properties:

g:10,1] = [0,1]
g'(d) <0 delo,1] (15)
g(1)=0

These properties are mathematically and physically
motivated, and are required to ensure damage propaga-
tion and to provide an upper bound to the phase field
d variable of 1 [18]. But the actual choice of this func-
tion has no physical relevance. A quadratic polynomial
is the most widely used one:

g9(d) = (1-d)*. (16)

More recently, Borden [3] introduced a cubic degrada-
tion function:

gs(d) = s((1—d)* - (1—d)*)+3(1—d)*—2(1—d)*. (17)

As will be discussed in Section 3.3, the main advan-
tage over the quadratic function is that it prevents the
emergence of spurious damage away from the crack tip.
It also better mimics a linear elastic-brittle behaviour.
This is due to the fact that lim,_,0¢.(0) = 0, which
prevents damage initiation from the initial increase in
the phase field. However, I'-convergence has so far only
been proved for the quadratic degradation function [10].

In [6] the degradation function g was multiplied with
the elastic energy density of the undamaged state, 1,
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such that the elastic energy density of the damaged
state reads:

V(e d) = g(d)o(e). (18)

This formulation was subsequently refined to account
for the fact that damage evolution occurs under dif-
ferent straining modes [1,4,13,17], and it was assumed
that the elastic energy of the undamaged state can be
additively decomposed into a damaged and an intact
part, 1o = Y3 + 1), so that the degradation function g
only acts on the damaged part:

Ve(e,d) = g(d)vg (e) + vy (e). (19)

This split can result from the decomposition of the
strain tensor into positive and negative strain compo-
nents, or from that into spherical and deviatoric strain
components. Substituting Equations (14) and (19) into
Equation (1) yields the smeared form of the total po-
tential energy for brittle fracture:

U= /Q g(d)yd(e) + ¥l (€) + Geyi(d, Vd) AV. (20)

Minimisation of ¥ and introduction of the history
field H to enforce irreversibility [18] lead to the strong
form:

dive(e,d) =0 x €2 (21a)

on=t x € I} (21b)

u=nu xely (21c)

gc(i - 2Ad) _ 994, x €0 (21d)
202 ad

Vd-n=0 xel (21e)

where t and u are the prescribed boundary tractions

and displacements, respectively, with I U I, = I' and
I; NI, = (. The Cauchy stress o and history field H
read:

d i
ole,d) = gld) 7 + S0 (22)
H(t) = max (). (23)

The weak form of Equation (21) can be derived in a
standard fashion. The finite element approximation of
the domain problem involves the following approxima-
tions of the field variables and their derivatives:

u(x) = N, (x)u’ e(x) = Bu(x)u*®
{d(x) — Ny(x)de 82(:) = By(x)d® 24

In order to capture possible snapback behaviour,
the finite element formulation was augmented by a
dissipation-based arc-length solver [14,21]. The result-
ing set of coupled, nonlinear equations is linearised and

solved using a Newton-Raphson iterative scheme, which
gives the iterative change of the state vector at iteration
k:

-1

od KKy, O —fjint
ou| = |Kuq Ky —£ Afext — fint
T 1,7
0A k 0" h Wl —¥ k—1
(25)
with
int LT T dg T
fd = gc ﬂNd Nd + 2le Bd d + %HNd dV
Q
(26)
fint — / B; (¢D! + D') B, udV (27)
Q
14
’L/) = §feXt (A()Au - A/\llo) — At (28)
afint afint
Koy =—% Kg =—2 2
dd 2d d u (29)
Ofint Ofint
o o
h = — = — 1
u "7 o (31)
where £ is the normalised load vector, A is the load

factor, Ar is the incremental dissipation, and D9 and
D! correspond to the damaged and intact parts of
the elasticity matrix, respectively. Ao and ugy are the
converged values for the load factor and displacements
of the previous increment.

3.2 Example 1: Single edge notched plate in pure shear

In order to verify the implementation of the brittle
model, a notched square plate of unit length, Figure 2,
is subjected to a shear loading. This benchmark test
has been examined for instance in [3,18]. The material
parameters are A = 121.15MPa, p = 80.77MPa and
Ge = 2.7-1073N/mm. The bottom edge is fixed, and
the top edge is moved horizontally by %. The vertical
displacements are prevented on the entire boundary I,
including on the initial notch. Following [18], the strain
tensor was decomposed into positive and negative com-
ponents, and irreversibility was enforced by using the
history field H.

The results are shown in Figure 3, and were ob-
tained using a monolithic scheme, a 100x100-element
mesh of linear quadrilaterals, and a length scale ¢ =
0.02mm. The results are in good agreeement with those
in [18]. This example shows the qualitative capabilities
of the brittle phase field formulation: the model is able
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O O O O O

0.5mm

0.5mm

0.5mm 0.5mm
Fig. 2: Notched plate: the top edge is moved horizon-
tally by «

to track the evolution of cracks of arbitrary geometries
and to predict the nonlinear force-displacement rela-
tionship until complete failure.

107!
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(b) Phase field contour plot

Fig. 3: Response of the notched plate under shear load-
ing

3.3 Example 3: Bar with reduced stiffness in the
middle under tension

Next, the one-dimensional bar of Figure 4 is considered.
The bar has a reduced thickness in the centre and is
loaded at the right edge by a force A f . The Young’s
modulus is £ = 10MPa and the fracture toughness
G. = 0.1N/mm. The bar has a length L = 1mm and a
thickness b = 1mm. The length scale parameter is cho-
sen to be ¢ = 2%. Since the problem is one-dimensional,
Y3 = E and 9} = 0, so that the degradation function
g directly acts on the Young’s modulus E.

h h h
I | )
/ [ L
L L L
c 3 < SL > 3 3

Fig. 4: 1D tension test for a bar with a reduced thickness
in the centre

Inspection of the strong form, Equation (21d),
shows that at the onset of loading the ‘driving force’
term g'H = ¢'¢d(e) starts to grow, forcing the phase
field, and consequently also the crack density 7y, to in-
crease along the entire bar. As shown by Equation (14),
this process dissipates energy, which explains the early
departure from linearity of the force-displacement curve
in Figure 5.

Next, the importance of using a monolithic solver
for this nonlinear problem is studied. For a constant
mesh size (150 elements, h = 0.0067mm) and a length
scale £ = 0.05mm, the response of the system for the
staggered and the monolithic schemes is compared. Fig-
ure 6 shows that the staggered scheme is very sensitive
to the size of the load increments, and has not con-
verged for the smallest step size. Indeed, the gain in
expended effort per load step for the staggered scheme
is easily compensated by the smaller number of steps
needed in the monolithic scheme to achieve the same
accuracy.

The dependence on the length scale ¢ is shown
in Figure 7 for a constant mesh size (150 elements,
h = 0.0067mm), which respects the rule of thumb ¢ > h
to accurately approximate the crack topology as pro-
posed in [19]. Clearly, an increasing length scale results
in a decreasing peak force. This makes it difficult to in-
terpret the length scale parameter for the brittle model.



Julien Vignollet et al.

—— 75 Elements, h = 0.0133mm
—— 150 Elements, 2 = 0.0067mm
—— 300 Elements, h = 0.0033mm

1071
|

6, -
Z
£ 4+ .
S
[}
5
[s#

2, -

0 | | | | | -

0 2 4 6 8 10 12 14 16

Displacement v in mm 1072

Fig. 5: Mesh refinement study for a constant length
scale £ = 0.05mm. The circles denote loading steps
where force control has been used and the triangles de-
note the steps where arc-length control has been used

—— Monolithic with arc-length —— Staggered Au = 1-10~?mm

— Staggered Au=1-10"°mm Staggered Au = 1-10"*mm

107!

6

Force F'in N

10 15 20 25

=l
ot

Displacement v in mm 1072

Fig. 6: Comparison of the monolithic and the staggered
approaches for £ = 0.05mm with a constant mesh size
(150 elements, h = 0.0067mm)

On one hand, ¢ has been introduced on purely mathe-
matical ground, Section 2, which is independent from
the mechanical field problem. On the other hand, when
linking the phase field and the mechanical field, the
length scale parameter seems to behave like a material
parameter, cf. [1,4].

From Figures 5 - 7 it appears that the brittle model
does not exhibit linear elastic behaviour prior to soft-
ening. Instead, the curves show nonlinearity from the
very beginning. Therefore, a cubic degradation func-
tion has been proposed in [3], which results in a linear
behaviour up to the peak force. The drawback of this
function is that an additional parameter s is introduced,

—— ¢ =0.0500mm — ¢ = 0.0250mm — ¢ = 0.0125mm

Force F'in N

0.4 i

0.2 B

1 | 1 | 1 | 1 | 1 I T - L L L
00 2 4 6 8§ 10 12 14 16 18 20 22

1072

Displacement » in mm

Fig. 7: Influence of the length scale parameter ¢ for a
constant mesh size (150 elements, h = 0.0067mm)

cf. Equation (17). The quadratic and the cubic degrada-
tion functions are compared in Figure 8 using different
parameters s. For s — 0 the peak force converges to a
unique value [3].

—— Cubic s = 1-10°
Cubic s =1-1072

—— Quadratic
— Cubics =1-10""!

1o : : : : : : —]
1r F
z 08} i
g L o ]
<3 s
§ 0.6 ‘,/
5 L ]
[s# y
0.4 s .
0.2 i
0 7 I I I - I I
0 2 4 6 8 10 12 14 16

Displacement v in mm 1072

Fig. 8: Comparison of the quadratic and cubic degra-
dation functions

Finally, the approximated crack length I is exam-

ined using Equation (12). The relative error is given
by

Iy -T
= —F
where the exact crack length is I’y = h/2 = 0.5mm. As
Figure 9 shows, this is a rather crude approximation
due to the fact that the model predicts a damaged zone
which spans the entire weakened part of the bar. The
tendency that is displayed by the circles vs the trian-
gles in Figure 9 suggests that this can be improved by

Is (32)
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reducing the length of the bar in the centre. However,
there is a concern that upon a reduction of the length
scale, the approximation for the crack length deterio-
rates (although ¢ >> h).

—o—( = 0.02500mm, 1:1:1 =&~ ¢ = 0.01250mm, 1:1:1 —e— ¢ = 0.00625mm, 1:1:1
—— ( = 0.02500mm, 2:1:2 —— ¢ = 0.01250mm, 2:1:2 —— ¢ = 0.00625mm, 2:1:2

W//

10—1 \\\M‘ Ll
1073 102

Mesh size h in mm

Error I'g

Fig. 9: Error Iy for the final approximated crack length
I7. The circles denote a bar with a ratio 1:1:1, the tri-
angles denote a bar with a ratio 2:1:2

4 Cohesive fracture

The objective of this section is to revisit the phase-field
model for cohesive fracture proposed in Reference [22]
and to show some further developments that allow for
the modelling of propagating cracks. Firstly, the main
features of the model are summarised. Refinements and
modifications are presented next, followed by some ex-
amples.

4.1 The mechanical field problem

Similar to the brittle model, the coupling between the
phase field and the mechanical field problems requires
the introduction of phase-field quantities in the poten-
tial in order to smear out the crack surface.

Like the brittle model presented in Section 3, the
topology of the smeared crack is introduced in the ex-
pression of the energy dissipation D, and the second
term of Equation (3) is rewritten as:

D=/g([[U]]M)dA:/g([[U]],H)w(d,Vd)dV (33)
r [0}

with G([u], k) the fracture energy function. Equa-
tion (33) transforms a discrete crack into a crack that
is smeared over a finite length orthogonal to the crack

surface, see also Figure 10. Formally, the smeared co-
hesive zone is defined by d(x) > 0, but in practice this
is relaxed and:

Iy = {x € 2d(x) > €} (34)

is taken to define the smeared cohesive crack, with € a
small tolerance. According to Equation (33), v, can be
interpreted as the function that confines the dissipation
of energy to the cohesive zone.

Fig. 10: I'y represents the discrete cohesive zone and
the centre of the smeared cohesive zone I}

The definition of a discrete quantity like a jump is
non-trivial in smeared models. For this purpose an aux-
iliary field, v, was introduced in Reference [22], and is
also used here:

[[u]](xc)z/ v(x)0edas,. (35)

oo

The auxiliary field thus approximates the crack opening
at any point x. € Iy, i.e. on the discrete crack surface
I'y. Further, for any point x € Iy, with Iy the area over
which the discrete crack has been distributed, it is pos-
sible to find the nearest point x. € I';. Requiring that
the auxiliary field v remains constant in the direction
normal to the crack, i.e.

(f_; —0 (36)
we obtain that

v(x) = v(%c + 2nn(x.)) = v(xc) (37)
with n the normal to the crack, and the displacement

jump can be approximated as:

o0

[u] (xc) ~ v(xc)/ dedx, = v(xe). (38)

— 00
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As a consequence of the introduction of the auxiliary
field, the fracture energy function becomes

G([u], k) ~ G(v,x) (39)
and the traction in the cohesive zone reads:
ta(v, k) = m while / tq(v,k)dv = G..

6V 0

(40)

The second step of the coupling requires the deriva-
tion of the elastic energy density function ¥° of the
damaged model that takes into account crack growth.
It relies on the assumption that the total strain € can
be split into an elastic term and a term that accounts
for damage:

e=¢e+¢e (41)
such that
V(e d) = () = (e — &9). (42)

This split can be derived explicitly from energy con-
siderations. On one hand, the second principle of ther-
modynamics gives:

0 S D = O'ijéij - ’@/;e
Me .,

- e “ij
8aij

. .d
= 0ij (Efj + Eij)
= 0 (€5 +€5) — 04

= O’ZJEd (43)

On the other hand, use of Equation (33) allow the ex-
plicit evaluation of the energy dissipation rate:

b= L (@) = vtav + 624 (44)
where ¥ could have equally been replaced by [u]. The
first term in Equation (44) measures the increment of
energy dissipated as a result of further opening the ex-
isting crack by an increment V. The second term corre-
sponds to the energy dissipated through the extension
of the cohesive zone by an increment d. Under the hy-
pothesis that the smeared jump v is initially zero in the
newly created cohesive zone, it can be assumed that ad-
vancing the cohesive zone as a result of a change d in
the phase field, is not accompanied by any dissipation
of energy as G(0) = 0. Under this assumption and com-
bining Equations (43) and (44), the part of the total
strain € that purely results from damage evolution can
be evaluated as:

¢! = vy sym(v @ n). (45)

Consequently, the elastic strain reads:

Ee

= Vu — ysym(v @ n), (46)
with V? the symmetrised gradient operator. If the dis-
placement, the auxiliary and the phase fields are all ap-
proximated by piecewise linear functions, the first term
in Equation (46) is constant in the one-dimensional
case, while the second term is a quadratic polynomial.
It was reported in [22] that this order mismatch leads
to stress oscillations, and it was suggested that the aux-
iliary and the phase fields are approximated with linear
functions, while the displacements are approximated
using cubic polynomials.

Finally, the smeared form of the total potential en-
ergy for cohesive fracture becomes

alov P
¥ = ¢(e® G(v)+—=|=— dv 47
/Q@(E)W“*zaxn) (47)

where a penalty term has been added to enforce the
auxiliary field v to remain constant along the normal
of the crack.

4.1.1 Discretised fields

With the potentials of the phase field, Equation (10),
and the mechanical field, Equation (47), at hand, we
solve them in a staggered manner, similar to [22]. The
discrete phase field problem is solved first, in order to
initialise the topology of the smeared cohesive crack.
This solution is used as an input to solve the discrete
mechanical problem. The algorithmic flow is shown in
Algorithm 1, while details regarding the mechanical
problem are derived below.

The governing equations of the mechanical prob-
lem are obtained by minimising the potential, Equa-
tion (47):

dive =0 x e (48a)
on=t xerl (48b)
v
Ye(ta —om) = az— xely (48¢)
ov

Note that in the momentum balance, Equation (48a),

the Cauchy stress o is a function of the elastic strain
only. Furthermore, the crack density function v, acts
as a switch that enforces the cohesive law in Equa-
tion (48c).
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As for the brittle model, the weak form is obtained
from Equation (48). Approximation of the field vari-
ables and their derivatives as

{u(x) = N, (x)u® {z—:(x) = B, (x)u®
v(x) = N, (x)v® sym(v®n) = B, (x)v

(49)

ov

a—xn = G'»U(X)Ve (50)
results in a nonlinear set of equations which can be
linearised and solved using a Newton-Raphson iterative
scheme, again enhanced by the dissipation-based arc-
length method [14,21]. The update of the state vector

at iteration k can be derived as:

Ju Koy Koo £ [AFext — fine
vl =Ky Ky, 0 —fint
T T
oA . h* 0 wol, — el
(51)
with:
fint — / —vBICB,u++/BYCB,v
2
+vNTt, + aGTG, vdV (52)
fint — / B CB,u-vB!CB, vdV (53)
2
P = %fext (AoAu — Adug) — Ar (54)
afint afint
Kv'u = z Kvu = z
ov ou (55)
afint afint
Ku'u = s uu — -
ov ou (56)
oY oY
h=_"— w=—.
a7 oa (57)

4.2 Crack propagation

In Reference [22], the position and growth of the phase
field was controlled by a driving force term

812
F = C—ba(wn) (58)

which results from the addition of a penalty term onto
the weak form of the phase field problem, with C' the
penalty weight and d4(zy,) is the Dirac function centred
at I'y. A crack set S was then defined, which is a list
of Gauss points where d = 1. This approach has some
disadvantages, since it not only requires an additional
parameter and more computations in order to evaluate

the driving force, but linear shape functions that en-
force d = 1 at a Gauss point can lead to nodal phase
field variables that locally exceed 1.

Here, we propose to build the centre of the cohesive
zone Iy with a crack set S which only contains nodes.
Consequently, the driving force F is no longer required.
Upon minimisation of the potential of the phase-field
potential, Equation (10), the strong form

d—40?V2?2d =0 x €2
dx)=1 xely (59)
Vd-n=0 xel

is obtained. Equation (59) implies that the centre of
the cohesive zone Iy is built using Dirichlet boundary
conditions.

Next, the weak form of Equation (59) can be derived
and can be discretised via:

d(x) = Ny(x)d®

ag(j = By(x)d". (60

The linear phase field problem is then solved for the
Dirichlet conditions d = [1...1]T prescribed at the
nodes in the crack set S:

K] | §] =1 =0 (61)
with

Kai = /Q QC%NgNd + 2/BYB,dV. (62)
Finally, the crack density is evaluated according to:

v =dT (%KN;de + EBEBd)d. (63)

At the beginning of the simulation, the crack set S°
is an inventory of nodes locating a potential initial de-
fect. For the first iteration (j = 0) of any subsequent
increment i, the crack set is initially frozen to the pre-
viously converged state: 5}:0 = Sé;;l. The mechanical
field problem is solved iteratively until a balance has
been obtained between the internal and the external
loads. The nucleation criterion is then evaluated with
the updated displacement and jump fields {u®, ve}ézo.
As in [22], the maximum principal stress is used as the
propagation criterion. This has the additional benefit
of directly providing the crack normal vector.

When the major principal stress o' exceeds the
fracture strength t,, the crack must be advanced
to dissipate more energy. The Gauss point GP; =
maXyecp (0]1 (x)) is identified, and the node N; closest
to GP; is added to the crack set, which becomes S;_;.
Confining the crack set to nodes can result in a mesh
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dependence. This is circumvented by shifting the node
N; to the location of Gp;. The phase-field problem is
then solved and the crack density is updated. The me-
chanical field problem must be updated for the same
increment i with the new crack set Si_,.

Once equilibrium has been obtained, the nucleation
criterion is checked again. If it is not violated, one can
advance to the next increment. Otherwise a new phase-
field distribution must be obtained. The procedure is
repeated until the loads are in equilibrium and the nu-
cleation criteria is violated nowhere.

4.3 Example 1: Propagating crack along a predefined
path

The delamination peel test of [22] is revisited with the
developments presented in the previous section. The ge-
ometry of the beam is depicted in Figure 11 and the
elastic parameters are £ = 100MPa and v = 0.3. The
fracture strength and energy are taken as t, = 1MPa
and G, = 0.1N/mm.

0.5mm
0.5mm

9mm Imm

u

Fig. 11: Geometry of the propagating crack example

The decohesion relation is chosen as

tu + kv v <0
tq(v) =
a(v) t,exp (—é—“v) v >0

c

(64)

where k prevents crack interpenetration. Herein, k =
1-10*MPa/mm has been used. The tolerance e, that
defines the cohesive zone, Equation (34), is taken as 1 -
1072, The penalty parameter that enforces the constant
jump in the direction normal to the crack is taken as
a=1,.

The purpose of this test is to demonstrate the ability
of the current formulation to model a propagating crack
along a predefined path. Hence, instead of allowing the
crack to curve away from the centre line of the beam, it
is forced to remain straight and to grow along the cen-
tre line. Consequently, the crack normals are predefined
and set such that n = {0,1}.

In the following, we consider:

— two mesh sizes: a coarse mesh with A = 0.1mm and
a finer mesh with A = 0.05mm. For both meshes,
the length scale is taken as ¢ = 0.1mm.

— two mesh types: structured and unstructured, Fig-
ures 12a and 12d, respectively. The unstructured
meshes are generated by a routine that shifts the
nodes of the structured mesh by a random amount
in the interval [—0.1h;0.1A]. To further perturb the
structure of the mesh, this routine can be run suc-
cessively n times, which will be referred to as ‘n-
loops’.

— two schemes: in the constant mesh case, the nodal
coordinates are frozen for the entire simulation. For
the moving mesh, the moving node algorithm de-
scribed in Section 4.2 is used.

In order to allow for a fair comparison between
the various cases, we consistently enforce nodes in the
crackset to be located on the centre line of the beam.
This means that for the moving mesh scheme, the mov-
ing nodes can only align laterally with the z-coordinate
offending Gauss point. For the structured mesh, nodes
cannot move vertically, see Figure 12c. For the unstruc-
tured mesh, nodes are forced to move to the centre line
of the beam, Figure 12d.

(a) Structured mesh, initial notch

(b) Structured mesh, fixed nodes

(c) Structured mesh, moving nodes

(d) Unstructured mesh, moving nodes

d

025 05 o075

0 1

Fig. 12: Phase field distribution: at the beginning of
the simulation (a), and for @ = 1.5mm (b)—(d). 100x10
elements (h ~ 0.1mm).

It is observed from Figure 13 that for a given exter-
nal load, the model evaluates the same cohesive zone
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for a structured mesh with fixed nodes, as well as for
a structured and an unstructured mesh with moving
nodes. The force-displacement response of the model
for the various cases is shown in Figure 13. We first note
that for sake of clarity, the results for the structured fine
mesh — with constant and with moving nodes — are not
presented as they are very close to those of the coarse
mesh. This confirms that the shown results represent
the converged solution. Figure 13 also shows that the
model is able to predict the critical load and the first
part of the softening regime for unstructured meshes,
even if thereafter the curves diverge progressively. This
phenomenon is more marked when the structure of the
mesh is perturbed more strongly.

—o— Structured, constant mesh; 10x100
—ea— Structured, moving mesh; 10x100
—— Unstructured, 1 loop; 10x100
—— Unstructured, 2 loops; 10x100
—— Unstructured, 1 loop; 20x200
—— Unstructured, 2 loops; 20x200

101
1.5F -
z 1t -
£
<
- | ]
5
59
0.5 i
O | | | |
0 0.5 1 1.5 2 2.5

Displacement % in mm

Fig. 13: Force-displacement relation for various meshes
and different numbers of perturbation loops

The slow departure from the converged solution for
the structured meshes can be explained by considering
the elastic strain distribution £f, in the cohesive zone.
As shown in Figure 14a for ¢ = 0.75mm, a wavy pat-
tern in the elastic strain evolves in the wake of the crack
tip, see also Figure 14b. These patterns are not observed
for the structured mesh. These strain oscillations tend
to lock the elastic strains, and therefore the stresses
in the cohesive zone, which causes the stiffer response
observed in Figure 13. This phenomenon can have sev-
eral causes. The elementary method used to generate
unstructured meshes resulted in a relatively poor mesh
quality. The use of cubic Lagrange functions for the
displacements can be another reason. Potential solu-
tions are to use mesh improvement technologies, stress
smoothing, or the use of splines (isogeometric analysis).

(a) & = 0.75mm

(b) @ = 1.5mm
Elastic strain yy
e
002 0.05

Fig. 14: Contour plot of the elastic strain ej, for the
unstructured 100x 10 mesh after two perturbation loops

4.4 Example 2: Bar with reduced stiffness

The 1D bar problem of Section 3.3 is revisited, now us-
ing the cohesive model, but with the same dimensions
and elastic properties. A strictly decaying traction re-
lation is used:

tg = tyexp (—tg—"[[u]]) ~ tyexp (—tg—"v> (65)

with the fracture strength ¢, = 2MPa. Following [22]
the penalty parameter that enforces the constant jump
in the direction normal to the crack is chosen as o = t,,.
Force control is applied up to the peak load, where the
solver switches to the dissipative arc-length method. In
theory, all Gauss points in the area with reduced stiff-
ness reach the fracture strength in the same increment.
However, as fracture is expected to occur locally, only a
single node is added to the crack set. As described be-
fore, the mesh is modified by shifting the node closest
to this Gauss point.

First, the influence of the mesh size is investigated.
Figure 15 shows that in the snapback regime, conver-
gence is obtained with much less elements than with
the brittle fracture model for ¢ = 0.05mm.

Next, the impact of the length scale parameter ¢ is
assessed. From Figure 16 we observe that the length
scale parameter ¢ has no influence on the linear elastic
regime, and neither on the peak load. A limited influ-
ence is observed in the post-peak regime. This means
that, at variance with the brittle case, the influence of
¢ is strictly confined to the topological approximation
and does not govern the overall mechanical behaviour
of the structure. It is also noted that the response is
perfectly linear up to the maximum load.

Finally, we have investigated the approximated
crack length Iy at failure, evaluated using quation (12).
The exact crack length is I'y = h/2 = 0.5mm and
the relative error is given by Equation (32). Figure 17
shows, for three different length scales, that the crack
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—— 6 Elements, h = 0.167mm
—— 9 Elements, h = 0.111mm
—— 12 Elements, A = 0.083mm

0.8 - .

0.6 - i

Force F in N

0.4 B

0 2 4 6 8 10 12 14 16 18 20 22

Displacement » in mm 1072

Fig. 15: Mesh refinement for constant length scale pa-
rameter ¢ = 0.05mm

[—— £ =0.0500mm — £ = 0.0250mm — ¢ = 0.0125mm |

T T T T T T T T T T T
1k -

0.8 - .

0.6 - i

Force F in N

0.4 B

0 2 4 6 8 10 12 14 16 18 20 22

Displacement » in mm 1072

Fig. 16: Influence of length scale parameter ¢ for con-
stant number of 300 elements. The results for ¢ =
0.025mm and ¢ = 0.0125mm almost coincide.

length approximation converges upon mesh refinement
(although denser meshes would be required for ¢ =
0.0125mm), but also that the quality of the approxi-
mation increases as the length scale decreases. A con-
vergence study in Reference [19] indicates that, for the
phase field problem only, this observation is only valid
for the discretised problem when the length scale is
larger than the mesh size, which seems to be in agree-
ment with the current results.

5 Concluding remarks

The present investigation confirms that phase field
models give qualitatively good results for brittle frac-
ture, both for mode-I and for mode-II problems [18,

—— ¢ = 0.0500mm —— ¢ = 0.0250mm —— ¢ = 0.0125mm

10()

107t

1072

Error I'g

1073

104

1073 1072 1071
Mesh size h in mm

Fig. 17: Error I'y for the final crack length I,

19]. However, the model can be sensitive. Using a sim-
ple one-dimensional bar with a defect in the centre part,
it was shown that the choice of the degradation func-
tion may considerably influence the results, as does the
choice of the length scale parameter ¢. The latter ob-
servation makes it difficult to interpret the length scale
parameter for the brittle phase field model. Its intro-
duction on mathematical grounds would point to a pa-
rameter for the phase field that does not influence the
mechanical field problem, but this is not confirmed in
actual computations in which the phase field and the
mechanical field are lined [1,4]. Another finding is that
solving the phase field and the mechanical field using
a monolithic scheme leads to a faster convergence with
respect to mesh refinement, compared to a partitioned
solution strategy.

In the last part of the paper the cohesive phase field
approach [22] is revisited and further elaborated, in par-
ticular for propagative cohesive cracks. From the theo-
retical side, a new, thermodynamically motivated way
to decompose the strain field into an elastic contribu-
tion and a smeared crack contribution has been pro-
posed. From the implementation side, a crack set has
been suggested that only contains nodes, rather than in-
tegration points. To obviate loss of flexibility and ame-
liorate possible crack bias, nodes are allowed to move
towards integration points were the fracture criterion
has been violated (r-adaptivity). An advantage is that
a driving force term [22] is not needed, thereby reduc-
ing the number of numerical parameters. Example cal-
culations — with structured and unstructured meshes,
and with fixed and moving nodes — on adhesive crack
propagation in a cantilever beam show the potential of
the method, although the extension to arbitary crack
propagation remains a challenge. Finally, revisiting the
one-dimensional example used in the beginning for brit-
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tle crack propagation shows that far less elements are
now needed to achieve convergence, and, more impor-
tantly, that the results are now virtually insensitive to
the value of the length scale parameter /.
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For Increment i do

Initialise ~

- The external loading: either u, A or At ;
- The initial crack set: S}_o = Sga 5

- The internal force vectors fi** and fi* ;

- The residual: Ro = [fext fext]T — [fint gine] T,

Do Crackset loop j while S; 11 ¢ S;

Do Iterative Newton loop k for the mechanical field problem while ||R| > e
CRACK OPENING ;

Evaluate

- The global stiffness matrices Ky, Kyu, Kyv, Kyu

- The incremental state vector [v du]} ;

Update
- The state vector [v u]} ; » _
- The internal force vectors fi** and fint;

- The residual Ry, = [fext fext]] — [fint fine] T

u k?

end

if 0'31- > t, then

EXTENSION OF THE COHESIVE ZONE ;
Evaluate

- Principal stresses 0']1~ and 032- ;

- Principal directions n' and n?;

Locate

- The Gauss point Gr;j = max (07 () 3
XEGP

- The closest node N; to Gp;

Update
- The mesh: move Nj to the location of Gpj;
- The crack set S; with Nj ;

Solve
| - The phase field problem with the new boundary conditions ;

Update
- The crack density functional ~; ;
- The normal at Gauss points in the cohesive zone I} ;

end
end

end

Algorithm 1: Algorithm for the cohesive model




