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On the numerical integration of isogeometric interface elements

Julien Vignollet, Stefan May and René de Borst∗†
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SUMMARY

Zero-thickness interface elements are commonly used in computational mechanics to model material
interfaces or to introduce discontinuities. The latter class requires the existence of a non-compliant interface
prior to the onset of fracture initiation. This is accomplished by assigned a high dummy stiffness to the
interface prior to cracking. This dummy stiffness is known to introduce oscillations in the traction profile
when using Gauss quadrature for the interface elements, butthese oscillations are removed when resorting to
a Newton-Cotes integration scheme [1]. The traction oscillations are aggravated for interface elements that
use B-splines or NURBS as basis functions (isogeometric interface elements), and worse, do not disappear
when using Newton-Cotes quadrature. An analysis is presented of this phenomenon, including eigenvalue
analysis, and it appears that the use of lumped integration (at the control points) is the only way to avoid the
oscillations in isogeometric interface elements. New findings have also been obtained for standard interface
elements, for example that oscillations occur in the relative displacements at the interface irrespective of the
value of the dummy stiffness. Copyrightc© 2014 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Zero-thickness interface elements are ubiquitous in finiteelement analysis. They have been used
frequently to characterise material interfaces and to introduce discontinuities in bodies, e.g. cracks,
shear bands, or faults since the early 1970s [2]. Interface elements have proven to be useful in the
analysis of concrete fracture [3], of delamination in composite materials and debonding of adhesive
layers [4, 5, 6, 7], and for analysing dynamic rupture using plastic slip models [8]. They are currently
available in most commercial finite element packages. In combination with their ease of use and
general robustness this has made interface elements popular for a wide range of applications.

Interface elements are well suited to describe stationary discontinuities, or situations where the
evolution of the discontinuity is known a priori, for example because the crack path is known
from experimental evidence [3], or because the evolution of the discontinuity is known from the
location of material interfaces, as in lamellar structures. An important step towards describing
arbitrary crack propagation was made in [9], where interface elements were inserted between all
continuum elements. Although powerful, it is an expensive solution, and moreover, it can add too
much compliance to the structure. Indeed, when interface elements are used to describe fracture,
they must be equipped with a high stiffness prior to the onsetof cracking in order to minimise
unphysical deformations in the interface. This is avoided when interface elements are generated
during crack propagation as in [10], but this can require elaborate remeshing procedures at each
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loading step. Another way to introduce interfaces is to exploit the discontinuous Galerkin approach,
as was done in [11, 12], see also [13].

Exploiting the possibility to lower the order of spline functions Verhooselet al. [14] have
introduced discontinuities in isogeometric analysis [15]. This idea was further elaborated in [16],
where an interface element was developed that is suitable for the analysis of mechanical and
poromechanical fracture problems, and in [17, 18] in the context of delamination. Unlike the original
paper, the formulation in [16] exploits Bézier extraction, which makes it easy to implement in
standard finite element software, as it is then cast in a formatthat is compatible with standard
finite element datastructures [19, 20].

It was noticed in [16] that prior to crack initiation, oscillations appeared in the traction profiles in
the interface elements. In principle, this is nothing new, and it has been known for long that such
oscillations emerge when using a high value of the dummy stiffness in combination with a Gauss
numerical integration scheme for the interface [1]. The observation that the remedy commonly
applied in standard finite element analysis, namely to replace Gauss quadrature by Newton-Cotes
integration, did not remove the traction oscillations, is,however, disturbing.

Herein, we carry out an in-depth investigation of the appearance of oscillations in the traction
profiles of non-compliant, isogeometric interface elements. In passing, we revisit some conclusions
regarding traction oscillations in standard interface elements [1]. To provide a proper setting, we
start with a concise summary of standard interface elementsin Section2, and recall evidence
on oscillations in traction profiles from the literature. Next, in Section3, we succinctly review
some basic concepts of isogeometric analysis, including the concept of Bézier extraction. Section4
constitutes the core of the paper and presents two-dimensional and three-dimensional analyses
of isogeometric interface elements, confirming that isogeometric interface elements inherit the
traction oscillations from standard interface elements, and, in fact, aggravate the situation. To
further investigate the issue, analyses have also been carried out for elements that are equipped
with splines as basis functions, but have conventionalC0-continuity at element boundaries,
and for isogeometric interface elements where the centre control point has been shifted. The
computations are augmented by eigenvalue analyses. The useof lumped integration turns out to
be a rigorous solution for isogeometric interface elements, as will be demonstrated in two and in
three dimensions. Furthermore, an investigation will be carried out to oscillations that occur in the
relative displacements at the interface, an issue that has not been paid attention to so far.

2. REVISITING INTERFACE ELEMENTS

2.1. Formulation

We consider a bodyΩ shown in Figure1, with Dirichlet boundary conditions atΓu and Neumann
boundary conditions atΓt. An interfaceΓd divides the domain into two parts,Ω+ and Ω−,
respectively, such thatΩ = Ω+ ∪ Ω−, and is equipped with a local coordinate system(n, s, t), where
n is normal vector to the interface, ands andt define the directions tangential to the interface. For
future reference we make distinction betweenΓ+

d , the side ofΓd that bordersΩ+, andΓ−

d , the side
of Γd that bordersΩ−.

Figure 1. Schematic representation of a bodyΩ crossed by a discontinuityΓd
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Without loss of generality we can restrict the present treatment to static loading conditions, so
that the balance of linear momentum reads:

∇ · σ(x) = 0 x ∈ Ω, (1)

whereσ denotes the Cauchy stress at a material pointx ∈ Ω. The problem is closed by imposing
boundary conditions at the external boundariesΓu andΓt, and on the discontinuityΓd:

u(x) = ū x ∈Γu, (2a)

n(x) · σ(x) = t̄(x) x ∈Γt, (2b)

n(x) · σ(x) = t
l
d([[u]](x)) x ∈Γd. (2c)

According to Equation (2c), the tractiontld, defined in the local coordinate system of the interface
Γd is a function of the displacement jump[[u]] at the interface. The latter can be decomposed in the
normal jump[[un]], and the slidings[[us]] and[[ut]], respectively:

[[u]] = [[un]]n+ [[us]]s + [[ut]]t, (3)

where, for clarity of the notation, the explicit dependenceof quantities on the spatial coordinatex
has been omitted, and the convention[[•]] = (•)+ − (•)− was adopted to denote a jump in a field
quantity,(•)+ and(•)− being evaluated atΓ+

d andΓ−

d , respectively. Employing the rotation matrix
R =

[

n
T, sT, tT

]

, the interface tractiontd referred to the global coordinate system can be derived
as:

td([[u]]) = R
T
t
l
d([[u]]). (4)

The interface tractiontld is generally a (strongly) nonlinear function of the displacement jump[[u]],

t
l
d([[u]]) = t

l
d. (5)

When considering material interfaces there is usually a physically non-zero compliance from the
onset of deformation and the undeformed state is characterised by:tld(0) = 0.

When interface elements are used to model cracks that nucleate in a hitherto intact medium, the
interface compliance is zero till the onset of cracking. A zero interface compliance corresponds to an
infinite interface stiffness and this is usually approximated by assigning high values to the ’dummy’
stiffnesseskn, ks andkt in the normal and the sliding directions. It is noted that thevalues of the
dummy stiffnesses are problem and length-scale dependent,but must be chosen as high as possible.
Prior to the onset of cracking the interface stiffness matrix Di in the local coordinate system then
attains the format:

Di =





kn 0 0
0 ks 0
0 0 kt



 (6)

and
t
l
d = Di[[u]]. (7)

Inserting Equation (7) into Equation (4) results in:

td([[u]]) = R
T
Di[[u]]. (8)

The weak formulation is obtained in a standard fashion by multiplying Equation (1) by a virtual
displacement fieldδu. Application of the divergence theorem and exploiting the external boundary
conditions (2(a))–(2(b)) then leads to:

∫

Γt

t̄ · δudΓt +

∫

Γ
+

d

td · δudΓ
+

d +

∫

Γ
−

d

td · δudΓ
−

d −

∫

Ω

σ : ∇(δu)dΩ = 0. (9)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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Since we have traction continuity, i.e. the same interface tractiontd acts onΓ−

d and onΓ+

d , we can
rewrite Equation (9) as:

∫

Ω

σ : δεdΩ +

∫

Γ
+

d

td · [[δu]]dΓd =

∫

Γt

t̄ · δudΓt, (10)

with [[δu]] the virtual displacement jump, andδε the virtual strain tensor, which is derived adopting
the usual assumption of small displacement gradients.

We subsequently discretise the domain intoEb elements for the bulk andEd interface elements,

Ω =

Eb
⋃

e=1

Ωe, Γd =

Ed
⋃

e=1

Γe
d, (11)

and interpolate the displacement within each element as follows:

u = Nu
e, (12)

with u
e a vector that contains the element nodal displacements andN the matrix that contains the

corresponding shape functions, which can either derive from a standard Lagrange interpolation, or
from an isogeometric approach, utilising B-splines for example. Exploiting the usual formalism
theB-matrix can be derived which contains the derivatives of theshape functions, and the relation
between the strainsε and the nodal displacementsue reads:

ε = Bu
e. (13)

Next, the operatorM is constructed, which evaluates the jump at the interface. It operates on the
nodal displacementsue

i at each side of the interface:

[[u]] = Mu
e
i . (14)

As an example we take the one-dimensional quadratic interface element of Figure2. The array that
contains the displacements of the interface element takes the formu

e
i =

{

{NS1}, {NS2}, {NS3}
}

,
where for each of the three node-sets{NSi} = {u−

i , u
+
i , v

−

i , v+i }, so that:

M =

[

−N1 N1 0 0 −N2 N2 0 0 −N3 N3 0 0
0 0 −N1 N1 0 0 −N2 N2 0 0 −N3 N3

]

. (15)

Figure 2. A quadratic one-dimensional interface element. The lines {1+, 2+, 3+} and {1−, 2−, 3−}
coincide, but are shifted for visualisation purposes.

We finally introduce the discretisation of Equation (11), Equation (8), and the operators defined
in Equations (12)–(15). The internal force vector can then be evaluated as follows:

f
int =

Eb
∑

e=1

∫

Ω
e

B
T
σdΩ +

Ed
∑

e=1

∫

Γ
e

d

M
T
R

T
td([[u]])dΓd (16a)

=

Eb
∑

e=1

∫

Ω
e

B
T
DbBu

edΩ +

Ed
∑

e=1

∫

Γ
e

d

M
T
R

T
DiMu

e
idΓd, (16b)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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whereDb is the material stiffness matrix of the bulk material. The stiffness matrix is obtained in a
standard manner, i.e. by linearisation of the internal force vector:

K =
∂f int

∂u
=

Eb
∑

e=1

∫

Ω
e

B
T
DbBdΩ +

Ei
∑

e=1

∫

Γ
e

d

M
T
R

T
DiRMdΓd. (17)

2.2. Spurious traction oscillations at the interface

As discussed in the preceding, traction profiles along interfaces will exhibit spurious oscillations
for high values of the dummy stiffness. As analysed in detailin Reference [1] this occurs in
particular when Gauss integration is used for evaluating the integrals that arise when formulating the
interface elements. A classical example is the notched beamsubjected to three-point bending shown
in Figure3a [1, 16]. The simply supported beam is divided by an interface alongits centreline,
and is loaded by a concentrated load at the centre. The beam is100 mm thick, and the material is
characterised by a Young’s modulusE = 2 GPa and a Poisson’s ratioν = 0.2. The traction profiles
are shown in Figure3b for values of the dummy stiffness in the normal direction that vary from
kn = 103 N/mm2 to kn = 105 N/mm2. Spurious oscillations occur in the traction profile near the tip
of the notch forkn > 103 N/mm2. When the dummy stiffness is further increased the oscillations
become more pronounced and tend to propagate upwards.

(a)
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Figure 3. (a) Geometry and boundary conditions for the notched beam subject to three-point bending. (b)
Traction profiles along the interface for different values of the dummy stiffnesskn using standard linear

four-noded elements and Gauss integration.

It has been shown in [1] for two-dimensional and three-dimensional configurations (hence for
one-dimensional and two-dimensional interfaces) that these traction oscillations disappear when
using a Newton-Cotes integration scheme instead of the traditional Gauss quadrature. A possible
explanation was suggested by inspecting the structure of the stiffness matrix of the interface element,
the second term in Equation (17). For instance, for a Gauss integration scheme, the part of the
stiffness matrix of a quadratic one-dimensional interfaceelements of lengthl that relates to the
normal displacementsu+ andu− takes the following form (in the local coordinate system):

K
FEM
Gauss=

l

15















4kn −4kn 2kn −2kn −kn kn
−4kn 4kn −2kn 2kn kn −kn
2kn −2kn 16kn −16kn 2kn −2kn
−2kn 2kn −16kn 16kn −2kn 2kn
−kn kn 2kn −2kn 4kn −4kn
kn −kn −2kn 2kn −4kn 4kn















. (18)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
Prepared usingnmeauth.cls DOI: 10.1002/nme



6

On the other hand, for a Newton-Cotes scheme, we obtain:

K
FEM
Newton-Cotes=

l

3















kn −kn 0 0 0 0
−kn kn 0 0 0 0
0 0 4kn −4kn 0 0
0 0 −4kn 4kn 0 0
0 0 0 0 kn −kn
0 0 0 0 −kn kn















. (19)

Direct inspection of Equations (18) and (19) reveals that the Newton-Cotes integration scheme
fully decouples the contributions of each node-set. That is, each degree of freedom is coupled to
the other five degrees of freedom when using the Gauss integration scheme, while it is only coupled
to that on the other side of the discontinuity for the Newton-Cotes scheme. This decoupling is also
observed when investigating the eigenmodes of the interface elements. Figure4bshows that for the
Newton-Cotes integration scheme, the eigenmodes exhibit aclear uncoupled structure, where each
of the six non-zero eigenmodes consists of an elementary deformation of the individual node-sets,
either an opening (modes 1-3) or a sliding (modes 4-6), whereit is noted that the eigenvalue analyses
have been carried out for the full stiffness matrix, i.e. including the stiffness terms belonging to the
v+ andv− displacements. The modes resulting from the Gauss integration scheme are shown in
Figure 4a. We observe that each of the three normal modes and each of thethree shear modes
triggers deformations at more than one node-set. In [1] the emergence of traction oscillations for
Gauss integration was attributed to this property.

(a) Gauss integration (b) Newton-Cotes integration

Figure 4. Eigenmodes of one-dimensional quadratic interface elements

3. EXTENSION TOC1-CONTINUOUS INTERFACE ELEMENTS

3.1. Isogeometric interface elements: B-splines and the Bézier operator

We will first give a succinct recapitulation of isogeometricinterface elements, see [14, 16] for more
details. The idea of isogeometric analysis (IGA) is to use the shape functions used for describing the
geometry in Computer Aided Design (CAD) packages, e.g., B-splines, NURBS or T-splines, also as
basis functions for the ensuing finite element analysis. In remainder we limit ourselves to B-splines
for simplicity, but similar results are anticipated when using NURBS or T-splines.

A univariate B-splineSp of orderp, parametrised usingξ, is defined as a linear combination ofn

basis functions:

Sp(ξ) =

n
∑

i=1

Ni,p(ξ)Pi = Np(ξ)P, (20)

with Ni,p andPi, i ∈ [1, n], then shape functions and control points, respectively, which define
the B-spline.Np andP are the matrices that gather the shape functions and the control points. In
this study, the location of the control points is evaluated using the Greville’s abscissae [21], which
ensures a constant Jacobian in each element. The basis functions Ni,p(ξ) are evaluated with the
Cox-de Boor recursion formula [22, 23]. B-splines are piecewise polynomials parametrised over a
knot vectorΞ = [ξ1, ξ2, · · · , ξn+p+1]. Knot valuesξi are ordered in a non-decreasing manner in a
knot vector, and each knot interval of strictly positive length represents an element. Knots can be

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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repeated in order to decrease the continuity along a B-spline. B-splines arep−mi times continuous,
wheremi is the multiplicity of knoti. Accordingly, a quadratic (p = 2) B-spline isC1-continuous
if the knot vector does not contain repeated knot values (mi = 1). When a knot value is repeated
twice,mi = 2, and the B-spline becomesC0-continuous. Finally, for a multiplicitymi = p+ 1 = 3,
a discontinuity is introduced between elements. For example, the quadratic B-spline shape functions
associated with the knot vectorΞ = [0, 0, 0, 1

12
, 2

12
, · · · , 1

2
, 1

2
, 1

2
, · · · , 1, 1, 1] contain a discontinuity

at ξ = 0.5, see Figure5.

Figure 5. Quadratic shape functions for knot vectorΞ = [0, 0, 0, 1
12

, 2
12

, · · · , 1
2
, 1
2
, 1
2
, · · · , 1, 1, 1].

Figure 5 shows that, unlike the Lagrange shape functions in standardfinite element analysis,
B-splines usually extend over more than one element. It is this property which allows for higher
continuity across element boundaries, but makes isogeometric analysis not directly amenable to
standard finite element datastructures, where shape functions (and many other properties) are
stored per element. Use of the Bézier extraction operator [19, 20] solves this issue. The procedure
exploits the fact that B-splines, and hence also NURBS and T-splines, can be expressed as a linear
combination of Bernstein polynomials of the same order. TheBernstein polynomials span a single
element and have the same value within each element, cf. Figure 6a, and therefore need to be
evaluated only once. Consequently, ifB contains the set of Bernstein basis functions, the shape
function matrix for each element can be expressed using the Bézier extraction operatorCe, which
is constant per element, as follows:

N
e

p
(ξ) = C

e
B

(

ξ̃(ξ)
)

, (21)

whereξ̃(ξ) denotes the mapping to the parent domain. For example, the non-zero shape functions in
element 3 of the B-spline mesh shown in Figure5 areN3,N4 andN5. The Bézier operator therefore
reads:

N
3
2(ξ) =







N3(ξ)
N4(ξ)
N5(ξ)







=





0.5 0 0
0.5 1 0.5
0 0 0.5























B1,2

(

ξ̃(ξ)
)

B2,2

(

ξ̃(ξ)
)

B3,2

(

ξ̃(ξ)
)



















, ξ ∈
[ 2

12
,
3

12

]

. (22)

From Equation (22) it is observed that the shape functions can be expressed as alinear combination
of the Bernstein polynomials:

N4(ξ) = 0.5B1,2

(

ξ̃(ξ)
)

+B2,2

(

ξ̃(ξ)
)

+ 0.5B3,2

(

ξ̃(ξ)
)

. (23)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
Prepared usingnmeauth.cls DOI: 10.1002/nme



8

(a) (b)

Figure 6. a) Quadratic Bernstein polynomials in the parent domain ξ̃ ∈ [−1, 1] - (b) Shape functionN4,
in element 4 (parametric domainξ ∈ [2/12, 3/12]), expressed as a linear combination of the Bernstein

polynomials.

3.2. Isogeometric analysis with interfaces in two and threedimensions

To create meshes in higher-dimensional spaces, parametrisations in they and thez-directions
are introduced using the knot vectorsH = [η1, η2, · · · , ηm+q+1] and Z = [ζ1, ζ2, · · · , ζo+r+1],
respectively. These knot vectors are associated withm basis functions of the orderq, which are
contained inMj,q(j ∈ {1,m}), ando basis functions of the orderr, contained inOk,r(k ∈ {1, o}),
respectively. The bivariate B-splines then follow from thetensor product of two knot vectors,
resulting in a parametrisation(ξ, η) ∈ Ξ⊗H:

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)Pi,j . (24)

Similarly, the trivariate B-spline results from the parametrisation(ξ, η, ζ) ∈ Ξ⊗H⊗Z:

S(ξ, η, ζ) =

n
∑

i=1

m
∑

j=1

o
∑

k=1

Ni,p(ξ)Mj,q(η)Ok,r(ζ)Pi,j,k. (25)

As for the univariate case, a Bézier operator can be defined in two and three dimensions as the tensor
product of the univariate operators.

Figure 7. Quadratic two-dimensional mesh with aC1-interface depicted in the physical space. The knot
vectors are:Ξ = [0, 0, 0, 1

12
, 2
12

, · · · , 1
2
, 1
2
, 1
2
, · · · , 1, 1, 1] andH = [0, 0, 0, 1

6
, 2
6
, 3
6
, 4
6
, 5
6
, 1, 1, 1]

As an example we consider a 12×6 quadratic two-dimensional mesh, Figure7, which can be
used to model the notched beam introduced in Figure3a. The knot vectorΞ in thex-direction is the

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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same as that used in Figure5, i.e. with a discontinuity atξ = 0.5. In they-direction, the knot vector
H = [0, 0, 0, 1

6
, 2

6
, 3

6
, 4

6
, 5

6
, 1, 1, 1] is used in order to obtainC1-continuity both in the bulk and along

the interface. Figure5 also shows that at the discontinuity, only one shape function is non-zero on
either side in theξ-direction:N8(ξ = 0.5−) = N9(ξ = 0.5+) = 1 in elements 6 and 7. This implies
that the discontinuity can be described on each side as the univariate B-spline:

S(ξ = 0.5, η) =

m
∑

j=1

Mj,q(η)Pi,j , i ∈ [1, n]. (26)

Consequently, theM-operator has the same structure as that for standard finite elements defined in
Equation (15). The shape function along the interface becomes the univariate B-spline functions
Mj,q for the two-dimensional case, and for the three-dimensional case the bivariate B-spline
functionsMj,qOk,r serve this purpose. Accordingly, the derivation of the internal and external force
vectors and of the stiffness matrix, cf. Equations (16) and (17) also remains the same.

4. TRACTION OSCILLATIONS IN ISOGEOMETRIC INTERFACE ELEMENTS

4.1. Results with higher continuity along the interface

We revisit the notched beam of Figure3a to assess the behaviour of the isogeometric interface
elements, and considerC1-continuous quadratic andC2-continuous cubic isogeometric interface
elements. Figure8 shows the results for a two-dimensional analysis (and hence, one-dimensional
interface elements). Quadratic B-splines with a three-point integration and cubic B-splines with
a four-point integration scheme have been used for the interface elements. Results are shown
both for Gauss quadrature and for Newton-Cotes integration. Compared to the standard finite
element analysis, cf. Figure3b, the results of the isogeometric analyses tend to aggravatethe
traction oscillations, especially near the tip of the notch, which is probably caused by the increased
continuity. More importantly, and in contrast to standard interface elements, use of Newton-Cotes
integration does not improve this unphysical behaviour, cf. [16]. Figure9 shows that very similar
results are obtained in three dimensions.

 0

 20

 40

 60

 80

 100

-1  0  1  2  3  4  5

O
rd

in
at

e 
(m

m
)

Traction (MPa) 

Gauss
Newton-Cotes

 15

 20

 25

 30

-0.5  0  0.5  1

 

 

(a) quadratic B-spline
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(b) cubic B-spline

Figure 8. Results for two-dimensional analysis of the notched beam. Traction profile for (a)C1 and (b)
C2-continuous interface elements using Gauss and Newton-Cotes integration withkn = 105N/mm3. Three-
point integration was used for the quadratic spline interpolation and a four-point rule was used for the cubic

spline interpolation.
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(a) Gauss integration
kn=102MPa/mm

(b) Gauss integration
kn=105MPa/mm

(c) Newton-Cotes integration
kn=105MPa/mm

Figure 9. Traction profiles along the interface forC1-continuous interface elements using Gauss and Newton-
Cotes integration in three dimensions

4.2. Results for aC0-continuous interface

A key advantage of isogeometric analysis over standard finite element analysis is that the degree
of continuity across element boundaries is easy to control using knot insertion [15]. This feature
allows lowering the degree of continuity across element boundaries toC0 in the y-direction. By
changing the knot vectorH defined before intoH = [0, 0, 0, 1
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6
, 1, 1, 1] (see

the mesh in Figure10), a discretisation is obtained that isC0-continuous at the element boundaries
– like standard finite elements – but uses B-splines for the interpolation instead of the Lagrange
polynomials used in standard finite elements.

Figure 10. Quadratic mesh withC0-continuous interface elements. The knot vectors are:Ξ =
[0, 0, 0, 1

12
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12

, · · · , 1
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, 1
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, 1
2
, · · · , 1, 1, 1] andH = [0, 0, 0, 1

6
, 1
6
, 2
6
, 2
6
, 3
6
, 3
6
, 4
6
, 4
6
, 5
6
, 5
6
, 1, 1, 1]

Figures11 and12 show that a reduction of the continuity toC0 along the interface makes the
results of the isogeometric analysis resemble those of the standard finite element model. This
observation holds for quadratic and for cubic shape functions, as well as for two-dimensional and
three-dimensional analyses. As expected, Gauss integration still gives rise to traction oscillations
along the interface, but, interestingly, the amplitude of these oscillations is lower, and is in the
same order of magnitude as that when using Lagrange polynomials, cf. Figure3b. The most striking
observation is that the traction oscillations disappear when Newton-Cotes integration is used, similar
to standard finite elements. Hence, the higher-order interelement continuity of isogeometric analysis
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seems to play an unfavourable role regarding the emergence of traction oscillations along the
interface.
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(a) quadratic B-spline
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(b) cubic B-spline

Figure 11. Traction profiles along the interface forC0-continuous interface elements using Gauss and
Newton-Cotes integration schemes. Results in two dimensions for (a) quadratic, and (b) cubic B-splines

with kn = 105N/mm3.

(a) Gauss integration
kn=102MPa/mm

(b) Gauss integration
kn=105MPa/mm

(c) Newton-Cotes integration
kn=105MPa/mm

Figure 12. Traction profiles along the interface forC0-continuous spline-based interface elements using
Gauss and Newton-Cotes integration schemes in three dimensions

Figure 13. Eigenmodes of quadraticC0-continuous interface elements with a B-spline interpolation and
using Newton-Cotes integration.
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The traction profiles of Figures11 and12 indicate that interface elements formulated within an
isogeometric analysis framework and standard interface elements behave in a similar manner as
when the interelement continuity is of the same order. However, there is a noteworthy difference as
for the isogeometric interface elements, Newton-Cotes integration now does not result in node-set
decoupling, yet results in smooth traction profiles. The coupling of the node-sets is clearly observed
from the structure of the stiffness matrix:

K
IGA-C0

Newton-Cotes=
l

12















5kn −5kn 2kn −2kn kn −kn
−5kn 5kn −2kn 2kn −kn kn
2kn −2kn 4kn −4kn 2kn −2kn
−2kn 2kn −4kn 4kn −2kn 2kn
kn −kn 2kn −2kn 5kn −5kn
−kn kn −2kn 2kn −5kn 5kn















, (27)

which closely resembles that of Equation (18). As in Equation (18) only the stiffness terms that
correspond to theu degrees of freedom have been printed for ease of readability. It also shows up
in Figure13, where the eigenmodes ofKIGA-C0

Newton-Coteshave been plotted in the physical space, so that
points depict the displacements at the vertices and at the mid-points rather than at the control points.
Similar as for the stiffness matrix that arises when using Gauss integration in conjunction with
standard interface elements,K

FEM
Gauss, the eigenmodes are coupled, cf. Figure4aand Equation (18).

Nonetheless, no traction oscillations are observed. This is an important result as it demonstrates
that the oscillatory behaviour of the traction along the interface is not related to the node-set
coupling [1]. It indicates that node-set decoupling is a sufficient rather than a necessary condition for
removing oscillations in traction profiles for interface elements, either formulated using Lagrange
polynomials, or using B-splines or NURBS.

Figure14 reviews the relative locations of the integration points and the nodes/control points
in the physical space for the cases considered in this study.It appears that for the two situations
without traction oscillations, i.e. when using Newton-Cotes integration in conjunction with standard
interface elements (FEM) and for theC0-continuous interface elements with a B-spline interpolation
(IGA-C0), the integration points coincide with the nodes/control points (second row, first and third
column, respectively). This coincidence could be a requirement for traction oscillations not to
emerge, and the flexibility of isogeometric analysis allowsto test this hypothesis. For this purpose
the mid-control point is shifted in the model withC0-interelement continuity. This results in a shift
of the mid-integration points as well, but by a different amount. This is because when the mid-
control point is shifted, the Greville abscissae is no longer used. As a consequence, the Jacobian of
the interface elements is no longer constant and the location of the centre of the element changes in
the physical space. Consequently, the mid-control points and the mid-integration points no longer
coincide. This is shown in the last row of Figure14. The results for this case with Newton-Cotes
integration do not exhibit traction oscillations, thus falsifying the hypothesis that the coinciding of
integration points and nodes/control points is a necessarycondition for traction oscillations not to
appear.

Figure 14. Relative location of integration points and nodes/control points. The cases without traction
oscillations are shaded
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The literature invariably shows only traction oscillations, but not relative displacements, and
notes that, when integrating interface elements with Gaussquadrature, the oscillations ameliorate
when the dummy stiffnesskn is reduced. Figure15 shows results for the relative displacement,
or displacement jump, at the interface, using quadratic isogeometric interface elements, for Gauss
integration as well as for Newton-Cotes integration. It is observed that, although the amplitude of
the traction oscillations decreases for lower values of thedummy stiffnesskn, the oscillations in the
jump field do not decrease, on the contrary. This observationholds irrespective of the integration
scheme. The observation that oscillatory behaviour in the relative displacements also occurs for
low values of the dummy stiffness is novel, and has been masked so far because in the plots of the
traction oscillations they have been multiplied by the stiffness, and a lower stiffness then damps the
oscillations in the tractions. The implication is that thatthe oscillatory nature is not driven by the
magnitude of the dummy stiffness, but seems to be an inherentcharacteristic of interface elements.
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(a)C0 - Gauss
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(b) C0 - Newton-Cotes
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(c) C1 - Gauss
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(d) C1 - Newton-Cotes

Figure 15. Jump profile along the interface forC0-continuous B-spline interfaces (a-b), and forC1-
continuous B-spline interfaces (c-d)

It is finally noted that the condition number of the global stiffness matrixK, see Equation (17),
defined as the quotient of the largest and the smallest eigenvalue, does not appear to be of relevance
regarding the occurrence of traction oscillations. This isobserved from Figure16, which gives the
condition number as a function of the dummy stiffness,kn, for standard interface elements and
isogeometric interface elements withC1-interelement continuity, and different integration schemes.
Moreover, tests with direct solvers as well as iterative solvers like conjugate gradients did not reveal
any differences in the results.
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Figure 16. Condition number of the global stiffness matrix as a function of the dummy stiffnesskn. Results
are also shown for lumped integration, which is discussed inSection4.3.

4.3. Lumped integration

In [1] lumped integration has been investigated as an alternative integration scheme. The
fundamental difference between lumped integration on one hand, and quadrature rules as Gauss
or Newton-Cotes on the other hand, lies in the evaluation of the integral along the discontinuity
that appears in the weak form, Equation (10). In Section2 the discretisation was introduced into
the weak form of Equation (11), together with interpolations of Equations (12) and (13), in order
to obtain the internal force vector and the stiffness matrixof the interface elements. In the lumped
integration scheme, rather than performing integration over elements, these integrals are evaluated
in a discrete sense for each discrete set of control-pointsScp, Figure17.

Figure 17. In the lumped integration scheme, interface elements are replaced by discrete sets of control
points. For visualisation purposes the control points are shifted, but in reality coincide.

The element displacement vector at the interface,u
e
i , is replaced by a vector which contains

the displacements at a given set of control pointsScp: ue
Scp = {u−, u+, v−, v+}Scp. Hence, the

displacement jump becomes a discrete quantity evaluated ateach set of control pointsScp, thus
redefining theMl operator, which now operates on single node-sets:

[[u]]Scp =

[

−1 1 0 0
0 0 −1 1

]











u−

u+

v−

v+











Scp

= MluScp. (28)

The internal force vector then reads:

f
int
interface=

nCPsets
∑

Scp=1

M
T
l DiMlu

e
ScpÃScp, (29)

where ’nCPsets’ stands for the number of sets of control points and ÃScp is a weighting
factor accounting for the geometry of the interface attached to the node-setScp (i.e.
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∑nCPsets
Scp=1

ÃScp = Ainterface). It is defined as:

ÃScp =

∫

Γd

N±

Scp dΓd. (30)

In Equation (30) N±

Scp denotes the shape function of either control point from the set Scp (on the
− side or on the+ side). This integral is evaluated using Gaussian integration in order to obtain the
exact surface contribution. In essence, the lumped integration scheme replaces interfaceelements
by point-setsat the interface, which can be interpreted as discrete springs.

It is observed from Figure18 (two-dimensional configuration) and Figure19 (three-dimensional
configuration) that the traction oscillations disappear when using the lumped integration scheme.
This holds forall cases considered, isogeometric interface elements with quadratic and cubic basis
functions andC0-interelement continuity, quadratic basis functions withC1-interelement continuity,
and cubic basis functions withC2-interelement continuity. It is noted that the magnitude ofthe
traction singularity at the notch decreases for the lumped scheme.
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(a) QuadraticC0-continuous interface
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(b) QuadraticC1-continuous interface
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(c) CubicC2-continuous interface

Figure 18. Traction profiles along the interface forC0, C1 andC2-continuous interface elements, using Gauss,
Newton-Cotes and lumped integration schemes in two dimensions withkn = 105N/mm3.
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(a)C0-continuous interface (b) C1-continuous interface

Figure 19. Traction profile along the interface for (a)C0- and (b)C1-continuous interface using lumped
integration in three dimensions forkn=105MPa/mm

5. CONCLUSIONS

The numerical integration of isogeometric interface elements with a zero initial compliance has been
investigated. In standard finite element analysis such elements are widely used to simulate cracking
when the crack path is known in advance, e.g. in lamellar solids, or from experimental evidence. It
turns out that, in line with an earlier, preliminary investigation [16], isogeometric interface elements
share the oscillations in the tractions along interfaces also observed for standard interface elements.
In fact, the higher continuity of isogeometric interface elements seems to aggravate the oscillations,
and it is disturbing that a solution commonly adopted for standard interface elements, namely
to adopt Newton-Cotes quadrature instead of Gauss quadrature, does not work for isogeometric
finite elements. This paper demonstrates that the use of lumped integration is the only solution in
the latter case, as this scheme has shown to be robust for two-dimensional and three-dimensional
configurations, and for quadratic and cubic B-spline interpolations.

The investigations have revealed a number of interesting aspects about interface elements in
general. First, node-set decoupling is not a necessary condition to remove traction oscillations along
the interface, but rather seems to be a sufficient condition.Next, it has been shown by inspection
of the relative displacements rather than the traction profiles at the interface, that the oscillatory
response is not simply driven by high values of the dummy stiffness as it has been assumed so far,
but seems to be inherent in the formulation of interface elements, either formulated in a standard
manner, or within the framework of isogeometric analysis.
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