2,116 research outputs found

    Jury Instructions: A Persistent Failure to Communicate

    Get PDF

    Jury Instructions: A Persistent Failure to Communicate

    Get PDF
    This article reports on an empirical study of juror comprehension of pattern jury instructions. It demonstrated that comprehension of the original instructions was poor, but that rewriting significantly improved their ability to understand and explain the meaning of the instructions. A separate study showed that jurors report that they discuss and consider the language of the instructions provided to them

    Jury Instructions: A Persistent Failure to Communicate

    Get PDF
    This article reports on an empirical study of juror comprehension of pattern jury instructions. It demonstrated that comprehension of the original instructions was poor, but that rewriting significantly improved their ability to understand and explain the meaning of the instructions. A separate study showed that jurors report that they discuss and consider the language of the instructions provided to them

    Phase 2: HGM air flow tests in support of HEX vane investigation

    Get PDF
    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4) Comparison of the experimental turbine exit flow environment to the environment calculated for the ATD HPOTP

    Psychologic modulation of the human immune response to varicella zoster

    Get PDF
    Psychoimmunology, the interrelationship between the brain/mind/psyche and the immune system, is now an established area of scientific research. Based on prior investigations we hypothesized that an experienced meditator could affect her delayed hypersensitivity reaction by a psychological process. A single-case study design was employed in which the subject was skin tested weekly with varicella zoster skin test reagent. After baseline immunologic studies, she was able, as hypothesized, to significantly reduce both the induration of her delayed hypersensitivity skin test reaction and in vitro lymphocyte stimulation to varicella zoster. Then, as predicted, she was able to allow her reaction to return to baseline. As a confirmation of what is to our knowledge this previously undescribed phenomenon, she was able to reproduce the entire sequence nine months later. It appears that this subject can intentionally modulate her immune response by a psychologic mechanism

    Correspondence

    Get PDF

    Nanoscale spin rectifiers controlled by the Stark effect

    Get PDF
    The control of orbital and spin state of single electrons is a key ingredient for quantum information processing, novel detection schemes, and, more generally, is of much relevance for spintronics. Coulomb and spin blockade (SB) in double quantum dots (DQDs) enable advanced single-spin operations that would be available even for room-temperature applications for sufficiently small devices. To date, however, spin operations in DQDs were observed at sub-Kelvin temperatures, a key reason being that scaling a DQD system while retaining an independent field-effect control on the individual dots is very challenging. Here we show that quantum-confined Stark effect allows an independent addressing of two dots only 5 nm apart with no need for aligned nanometer-size local gating. We thus demonstrate a scalable method to fully control a DQD device, regardless of its physical size. In the present implementation we show InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to 10 K. We also report and discuss an unexpected re-entrant SB lifting as a function magnetic-field intensity

    Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes

    Full text link
    Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has until now prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultra-clean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to that in the Klein paradox of relativistic quantum mechanics.Comment: 21 pages including supplementary informatio

    Asymptotic Improvement of Resummation and Perturbative Predictions in Quantum Field Theory

    Full text link
    The improvement of resummation algorithms for divergent perturbative expansions in quantum field theory by asymptotic information about perturbative coefficients is investigated. Various asymptotically optimized resummation prescriptions are considered. The improvement of perturbative predictions beyond the reexpansion of rational approximants is discussed.Comment: 21 pages, LaTeX, 3 tables; title shortened; typographical errors corrected; minor changes of style; 2 references adde
    corecore