365 research outputs found

    The Effect of Hair Color on the Incorporation of Codeine into Human Hair

    Get PDF
    The influence of melanin on the binding of xenobiotics in hair will impact the interpretation of drug concentrations determined by hair testing. The purpose of this study was to determine if codeine, as a model compound of abused drugs, would be incorporated into black, brown, blond, or red hair as a function of melanin concentration. Such data would assist in the interpretation of codeine concentrations in hair and help elucidate the potential influence of hair color on incorporation of drugs. Male and female Caucasians with black (n = 6), brown (n = 12), blond (n = 8), or red hair (n = 6) and non-Caucasians with black hair (n = 12) aged 21-40 years were enrolled in the study. Each subject was administered oral codeine phosphate syrup in a dosage of 30 mg three times a day for five days. Twenty-four hours after the end of the treatment period, a 30-mg codeine dose was administered and the subject's plasma area under the concentration time curve (AUC) for codeine was determined. Codeine and melanin were measured in the first 3 cm of hair closest to the vertex region of the scalp prior to and 1, 4, 5, 6, and 7 weeks after dosing. The quantitative and qualitative melanin profiles were determined for each subjects hair to provide an objective measure of hair color. The plasma concentrations of codeine were measured to eliminate differences in the bioavailability and clearance of codeine as factors that might account for the differences in codeine hair concentrations. The subjects were asked not to cut their hair in the vertex region of the scalp or to use any form of chemical treatment on their hair, but otherwise normal hygienic measures were permitted. The mean (± SE) hair codeine concentrations 5 weeks after dosing were 1429 (± 249) pg/mg in black hair; 208 (± 17) pg/mg in brown hair; 99 (± 10) pg/mg in blond hair; and 69 (± 11) in red hair pg/mg. In black hair, codeine concentrations were 2564 (± 170) pg/mg for Asians and 865 (± 162) pg/mg for Caucasians. Similar concentration relationships were observed at weeks 4, 6, and 7. A strong relationship between the hair concentrations of codeine and melanin (R2 = 0.73) was observed. Normalization of the codeine concentration with the melanin concentration reduced the hair color differences observed. These data demonstrate that the interpretation and reporting of hair test results for codeine are influenced by hair color. After this dosing protocol, the proposed federal guideline cutoff of 200 pg/mg of codeine would result in 100% of subjects with black hair and 50% of subjects with brown hair being reported as positive, and subjects with blond or red hair would be reported as negative. The incorporation of these drugs into hair should be studied carefully in humans to ensure the appropriate interpretation of drug concentration

    Physics of Eclipsing Binaries: Modelling in the new era of ultra-high precision photometry

    Get PDF
    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when a star moves towards the satellite and a decrease in flux when it moves away. Similarly, Rømer delays, or light travel time effects, also have to taken into account when modelling the supreme quality data that is now available. The detection of offsets between primary and secondary eclipse phases in binaries with extreme mass ratios, and the observation of Rømer delays in the signals of pulsators in binary stars, have allowed us to determine the orbits of several binaries without the need for spectroscopy. A third example of a small-scale effect that has to be taken into account when modelling specific binary systems, are lensing effects. A new binary light curve modelling code, PHOEBE 2.0, that takes all these effect into account is currently being developed

    A Search for Hierarchical Triples using Kepler Eclipse Timing

    Full text link
    We present the first results of a Kepler survey of 41 eclipsing binaries that we undertook to search for third star companions. Such tertiaries will periodically alter the eclipse timings through light travel time and dynamical effects. We discuss the prevalence of starspots and pulsation among these binaries and how these phenomena influence the eclipse times. There is no evidence of short period companions (P < 700 d) among this sample, but we do find evidence for long term timing variations in 14 targets (34%). We argue that this finding is consistent with the presence of tertiary companions among a significant fraction of the targets, especially if many have orbits measured in decades. This result supports the idea that the formation of close binaries involves the deposition of angular momentum into the orbital motion of a third star.Comment: AJ, in press, 104 pages, 2 figure sets plus 1 regular figur

    XMM-Newton survey of two Upper Scorpius regions

    Get PDF
    We study X-ray emission from young stars by analyzing deep XMM-Newton observations of two regions of the Upper Scorpius association, having an age of 5 Myr. Based on near infrared and optical photometry we identify 22 Upper Scorpius photometric members among the 224 detected X-ray sources. We derive coronal properties of Upper Scorpius stars by performing X-ray spectral and timing analysis. The study of four strong and isolated stellar flares allows us to derive the length of the flaring loops. Among the 22 Upper Scorpius stars, 13 are identified as Upper Scorpius photometric members for the first time. The sample includes 7 weak-line T Tauri stars and 1 classical T Tauri star, while the nature of the remaining sources is unknown. Except for the intermediate mass star HD 142578, all the detected USco sources are low mass stars of spectral type ranging from G to late M. The X-ray emission spectrum of the most intense Upper Scorpius sources indicates metal depleted plasma with temperature of ~10 MK, resembling the typical coronal emission of active main sequence stars. At least 59% of the detected members of the association have variable X-ray emission, and the flaring coronal structures appear shorter than or comparable to the stellar radii already at the Upper Scorpius age. We also find indication of increasing plasma metallicity (up to a factor 20) during strong flares. We identify a new galaxy cluster among the 224 X-ray source detected: the X-ray spectrum of its intra cluster medium indicates a redshift of 0.41+/-0.02.Comment: 27 pages, 15 postscript figures, accepted for publication in Astronomy and Astrophysics. A complete version of the paper, containing better qaulity figures and Appendices B & C, is available at http://www.astropa.unipa.it/Library/preprint.htm

    Call to adopt a nominal set of astrophysical parameters and constants to improve the accuracy of fundamental physical properties of stars

    Full text link
    The increasing precision of astronomical observations of stars and stellar systems is gradually getting to a level where the use of slightly different values of the solar mass, radius and luminosity, as well as different values of fundamental physical constants, can lead to measurable systematic differences in the determination of basic physical properties. An equivalent issue with an inconsistent value of the speed of light was resolved by adopting a nominal value that is constant and has no error associated with it. Analogously, we suggest that the systematic error in stellar parameters may be eliminated by: (1) replacing the solar radius Rsun and luminosity Lsun by the nominal values that are by definition exact and expressed in SI units: 1 RnomSun = 6.95508 x 10^8 m and 1 LnomSun = 3.846 x 10^{26} W; (2) computing stellar masses in terms of Msun by noting that the measurement error of the product G.Msun is 5 orders of magnitude smaller than the error in G; (3) computing stellar masses and temperatures in SI units by using the derived values Msun(2010) = 1.988547 x 10^{30} kg and Tsun(2010) = 5779.57 K; and (4) clearly stating the reference for the values of the fundamental physical constants used. We discuss the need and demonstrate the advantages of such a paradigm shift.Comment: 6 pages, 3 table

    High-Resolution Positional Tracking for Long-Term Analysis of Drosophila Sleep and Locomotion Using the “Tracker” Program

    Get PDF
    Drosophila melanogaster has been used for decades in the study of circadian behavior, and more recently has become a popular model for the study of sleep. The classic method for monitoring fly activity involves counting the number of infrared beam crosses in individual small glass tubes. Incident recording methods such as this can measure gross locomotor activity, but they are unable to provide details about where the fly is located in space and do not detect small movements (i.e. anything less than half the enclosure size), which could lead to an overestimation of sleep and an inaccurate report of the behavior of the fly. This is especially problematic if the fly is awake, but is not moving distances that span the enclosure. Similarly, locomotor deficiencies could be incorrectly classified as sleep phenotypes. To address these issues, we have developed a locomotor tracking technique (the “Tracker” program) that records the exact location of a fly in real time. This allows for the detection of very small movements at any location within the tube. In addition to circadian locomotor activity, we are able to collect other information, such as distance, speed, food proximity, place preference, and multiple additional parameters that relate to sleep structure. Direct comparisons of incident recording and our motion tracking application using wild type and locomotor-deficient (CASK-β null) flies show that the increased temporal resolution in the data from the Tracker program can greatly affect the interpretation of the state of the fly. This is especially evident when a particular condition or genotype has strong effects on the behavior, and can provide a wealth of information previously unavailable to the investigator. The interaction of sleep with other behaviors can also be assessed directly in many cases with this method

    Two Earth-sized planets orbiting Kepler-20

    Get PDF
    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011; Published online 20 December 201

    Increasing the satisfaction of general practitioners with continuing medical education programs: A method for quality improvement through increasing teacher-learner interaction

    Get PDF
    BACKGROUND: Continuing medical education (CME) for general practitioners relies on specialist-based teaching methods in many settings. Formal lectures by specialists may not meet the learning needs of practitioners and may cause dissatisfaction with traditional CME. Increasing learner involvement in teaching programs may improve learner satisfaction. METHODS: A quality improvement program for CME for 18 general practitioners in the Tel Aviv region was designed as a result of dissatisfaction with traditional CME activities. A two-step strategy for change was developed. The CME participants first selected the study topics relevant to them from a needs assessment and prepared background material on the topics. In the second step, specialist teachers were invited to answer questions arising from the preparation of selected topics. Satisfaction with the traditional lecture program and the new participatory program were assessed by a questionnaire. The quality criteria included the relevance, importance and applicability of the CME topic chosen to the participant's practice, the clarity of the presentation and the effective use of teaching aids by the lecturer and the potential of the lecturer to serve as a consultant to the participant. RESULTS: The participatory model of CME significantly increased satisfaction with relevance, applicability and interest in CME topics compared to the traditional lecture format. CONCLUSIONS: Increased learner participation in the selection and preparation of CME topics, and increased interaction between CME teachers and learners results in increased satisfaction with teaching programs. Future study of the effect of this model on physician performance is required

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets
    corecore