3,404 research outputs found
Q**2-dependence of semi-inclusive electron-nucleus scattering and nucleon-nucleon correlations
We analize semi-inclusive electron-nucleus processes e+A->e'+h+X at moderate
Q**2 and energy transfer nu. Our results show that nucleons bound in the
nuclear medium are distributed according to a function f_A that reduces to the
standard light-cone distribution in the Bjorken limit and exhibits a sizeable
Q**2-dependence at lower Q**2, particular Q**2 is order of nu**2.Comment: 8 pages of LaTeX-text and 2 figure ps-file
Biases in Expansion Distances of Novae Arising from the Prolate Geometry of Nova Shells
(abridged) Expansion distances (or expansion parallaxes) for classical novae
are based on comparing a measurement of the shell expansion velocity,
multiplied by the time since outburst, with some measure of the angular size of
the shell. We review and formalize this method in the case of prolate
spheroidal shells. We present expressions for the maximum line-of-sight
velocity from a complete, expanding shell and for its projected major and minor
axes, in terms of the intrinsic axis ratio and the inclination of the polar
axis to the line of sight. For six distinct definitions of ``angular size'', we
tabulate the error in distance that is introduced under the assumption of
spherical symmetry (i.e., without correcting for inclination and axis ratio).
The errors can be significant and systematic, affecting studies of novae
whether considered individually or statistically. Each of the six estimators
overpredicts the distance when the polar axis is close to the line of sight,
and most underpredict the distance when the polar axis is close to the plane of
the sky. The straight mean of the projected semimajor and semiminor axes gives
the least distance bias for an ensemble of randomly oriented prolate shells.
The best individual expansion distances, however, result from a full
spatio-kinematic modeling of the nova shell. We discuss several practical
complications that affect expansion distance measurements of real nova shells.
Nova shell expansion distances be based on velocity and angular size
measurements made contemporaneously if possible, and the same ions and
transitions should be used for the imaging and velocity measurements. We
emphasize the need for complete and explicit reporting of measurement
procedures and results, regardless of the specific method used.Comment: 21 pages, LaTeX, uses aasms4.sty, to be published in Publ. Astron.
Soc. of the Pacific, May 200
Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury
We use a nonstationary generalization of the higher-order structure function
technique to investigate statistical properties of the magnetic field
fluctuations recorded by MESSENGER spacecraft during its first flyby
(01/14/2008) through the near Mercury's space environment, with the emphasis on
key boundary regions participating in the solar wind -- magnetosphere
interaction. Our analysis shows, for the first time, that kinetic-scale
fluctuations play a significant role in the Mercury's magnetosphere up to the
largest resolvable time scale ~20 s imposed by the signal nonstationarity,
suggesting that turbulence at this planet is largely controlled by finite
Larmor radius effects. In particular, we report the presence of a highly
turbulent and extended foreshock system filled with packets of ULF
oscillations, broad-band intermittent fluctuations in the magnetosheath,
ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail,
and kinetic-scale fluctuations in the inner current sheet encountered at the
outbound (dawn-side) magnetopause. Overall, our measurements indicate that the
Hermean magnetosphere, as well as the surrounding region, are strongly affected
by non-MHD effects introduced by finite sizes of cyclotron orbits of the
constituting ion species. Physical mechanisms of these effects and their
potentially critical impact on the structure and dynamics of Mercury's magnetic
field remain to be understood.Comment: 46 pages, 5 figures, 2 table
The Ground State of the ``Frozen'' Electron Phase in Two-Dimensional Narrow-Band Conductors with a Long-Range Interelectron Repulsion. Stripe Formation and Effective Lowering of Dimension
In narrow-band conductors a weakly screened Coulomb interelectron repulsion
can supress narrow-band electrons' hopping, resulting in formation of a
``frozen'' electron phase which differs principally from any known macroscopic
self-localized electron state including the Wigner crystal. In a zero-bandwidth
limit the ``frozen'' electron phase is a classical lattice system with a
long-range interparticle repulsion. The ground state of such systems has been
considered in the case of two dimensions for an isotropic pair potential of the
mutual particle repulsion. It has been shown that particle ordering into
stripes and effective lowering of dimension universally resides in the ground
state for any physically reasonable pair potential and for any geometry of the
conductor lattice. On the basis of this fact a rigorous general procedure to
fully describe the ground state has been formulated. Arguments have been
adduced that charge ordering in High-T_c superconductors testifies to presence
of a ``frozen'' electron phase in these systems.Comment: 5 pages, LaTeX 2.09, 1 figure in external PostScript files. To appear
in Phys.Rev B Rapid Communication
Spectroscopy of the parametric magnons excited by 4-wave process
Using a Magnetic Resonace Force Microscope, we have performed ferromagnetic
resonance (FMR) spectroscopy on parametric magnons created by 4-wave process.
This is achieved by measuring the differential response to a small source
modulation superimposed to a constant excitation power that drives the dynamics
in the saturation regime of the transverse component. By sweeping the applied
field, we observe abrupt readjustement of the total number of magnons each time
the excitation coincides with a parametric mode. This gives rise to
ultra-narrow peaks whose linewith is lower than of the applied
field.Comment: 4 page
AlGaAs heterojunction lasers
The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures
High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications
A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described
Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations
ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates
A Frequency-Controlled Magnetic Vortex Memory
Using the ultra low damping NiMnSb half-Heusler alloy patterned into
vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile
memory controlled by the frequency. A perpendicular bias magnetic field is used
to split the frequency of the vortex core gyrotropic rotation into two distinct
frequencies, depending on the sign of the vortex core polarity inside
the dot. A magnetic resonance force microscope and microwave pulses applied at
one of these two resonant frequencies allow for local and deterministic
addressing of binary information (core polarity)
- …