339 research outputs found

    MULTIDIMENSIONAL PEPTIDE/PROTEIN ANALYSIS AND IDENTIFICATION BY SEQUENCE DATABASE SEARCH USING MASS SPECTROMETRIC DATA

    Get PDF
    In order to generate proteomics data that are suitable to validate protein identification in complex mixtures using multidimensional liquid-chromatography-mass spectrometry approaches, we implemented an offline two-dimensional liquid chromatography method combining strong cation-exchange- and ion-pair reversed-phase chromatography followed by electrospray ionization tandem mass spectrormetry (ESI-MS/MS) for the analysis of a bovine serum albumin digest. The fragment ion spectra generated by ESI-MS/MS were subsequently analyzed via MASCOT database search. The obtained identification data were evaluated in terms of quality of protein/peptide identification by means of score values, reproducibility of identification in replicate measurements, distribution of tryptic peptides among different fractions, and overall number of unique identified proteins/peptides. Finally, we improved the trapping conditions in the second dimension by using a more hydrophobic amphiphile in the loading buffer. The improvement was demonstrated by comparison of the obtained identification data, such as number of identified peptides, cumulative mowse scores and reproducibility of identification

    Dynamics of a structured slug population model in the absence of seasonal variation

    Get PDF
    We develop a novel, nonlinear structured population model for the slug Deroceras reticulatum, a highly significant agricultural pest of great economic impact, in both organic and non-organic settings. In the absence of seasonal variations, we numerically explore the effect of life history traits that are dependent on an individual's size and measures of population biomass. We conduct a systematic exploration of parameter space and highlight the main mechanisms and implications of model design. A major conclusion of this work is that strong size dependent predation significantly adjusts the competitive balance, leading to non-monotonic steady state solutions and slowly decaying transients consisting of distinct generational cycles. Furthermore, we demonstrate how a simple ratio of adult to juvenile biomass can act as a useful diagnostic to distinguish between predated and non-predated environments, and may be useful in agricultural settings

    Introgression across evolutionary scales suggests reticulation contributes to Amazonian tree diversity

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.The data that support the findings of this study are openly available from online repositories. All raw reads generated with the targeted bait capture and ddRADseq methods are available on the NCBI Sequence Read Archive with the Accession nos SAMN13439069‐SAMN13439140 and SAMN13441804‐SAMN13441974, respectively, under the BioProject number PRJNA592723. All full phylogenomic sequence alignments, single‐accession‐per‐species alignments and tree files, bgc input files, Stacks output files and the Detarioideae bait kit sequence file are found on Dryad (https://doi.org/10.5061/dryad.k3j9kd53w). Data are under embargo until publication, and any further data required are available from the corresponding author upon reasonable request.Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.Natural Environment Research Council (NERC)Genetics Societ

    Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false positive and false negative annotations. So far, standard algorithms for protein identification do not use the information gained from separation processes usually involved in peptide analysis, such as retention time information, which are readily available from chromatographic separation of the sample. Identification can thus be improved by comparing measured retention times to predicted retention times. Current prediction models are derived from a set of measured test analytes but they usually require large amounts of training data.</p> <p>Results</p> <p>We introduce a new kernel function which can be applied in combination with support vector machines to a wide range of computational proteomics problems. We show the performance of this new approach by applying it to the prediction of peptide adsorption/elution behavior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Furthermore, the predicted retention times are used to improve spectrum identifications by a <it>p</it>-value-based filtering approach. The approach was tested on a number of different datasets and shows excellent performance while requiring only very small training sets (about 40 peptides instead of thousands). Using the retention time predictor in our retention time filter improves the fraction of correctly identified peptide mass spectra significantly.</p> <p>Conclusion</p> <p>The proposed kernel function is well-suited for the prediction of chromatographic separation in computational proteomics and requires only a limited amount of training data. The performance of this new method is demonstrated by applying it to peptide retention time prediction in IP-RP-HPLC and prediction of peptide sample fractionation in SAX-SPE. Finally, we incorporate the predicted chromatographic behavior in a <it>p</it>-value based filter to improve peptide identifications based on liquid chromatography-tandem mass spectrometry.</p

    Cerebrospinal Fluid Dendritic Cells Infiltrate the Brain Parenchyma and Target the Cervical Lymph Nodes under Neuroinflammatory Conditions

    Get PDF
    BACKGROUND: In many neuroinflammatory diseases, dendritic cells (DCs) accumulate in several compartments of the central nervous system (CNS), including the cerebrospinal fluid (CSF). Myeloid DCs invading the inflamed CNS are thus thought to play a major role in the initiation and perpetuation of CNS-targeted autoimmune responses. We previously reported that, in normal rats, DCs injected intra-CSF migrated outside the CNS and reached the B-cell zone of cervical lymph nodes. However, there is yet no information on the migratory behavior of CSF-circulating DCs under neuroinflammatory conditions. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we performed in vivo transfer experiments in rats suffering from experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. EAE or control rats were injected intra-CSF with bone marrow-derived myeloid DCs labeled with the fluorescent marker carboxyfluorescein diacetate succinimidyl ester (CFSE). In parallel experiments, fluorescent microspheres were injected intra-CSF to EAE rats in order to track endogenous antigen-presenting cells (APCs). Animals were then sacrificed on day 1 or 8 post-injection and their brain and peripheral lymph nodes were assessed for the presence of microspheres(+) APCs or CFSE(+) DCs by immunohistology and/or FACS analysis. Data showed that in EAE rats, DCs injected intra-CSF substantially infiltrated several compartments of the inflamed CNS, including the periventricular demyelinating lesions. We also found that in EAE rats, as compared to controls, a larger number of intra-CSF injected DCs reached the cervical lymph nodes. This migratory behavior was accompanied by an accentuation of EAE clinical signs and an increased systemic antibody response against myelin oligodendrocyte glycoprotein, a major immunogenic myelin antigen. CONCLUSIONS/SIGNIFICANCE: Altogether, these results indicate that CSF-circulating DCs are able to both survey the inflamed brain and to reach the cervical lymph nodes. In EAE and maybe multiple sclerosis, CSF-circulating DCs may thus support the immune responses that develop within and outside the inflamed CNS

    A Modeling Framework to Describe the Transmission of Bluetongue Virus within and between Farms in Great Britain

    Get PDF
    Recently much attention has been given to developing national-scale micro-simulation models for livestock diseases that can be used to predict spread and assess the impact of control measures. The focus of these models has been on directly transmitted infections with little attention given to vector-borne diseases such as bluetongue, a viral disease of ruminants transmitted by Culicoides biting midges. Yet BT has emerged over the past decade as one of the most important diseases of livestock.We developed a stochastic, spatially-explicit, farm-level model to describe the spread of bluetongue virus (BTV) within and between farms. Transmission between farms was modeled by a generic kernel, which includes both animal and vector movements. Once a farm acquired infection, the within-farm dynamics were simulated based on the number of cattle and sheep kept on the farm and on local temperatures. Parameter estimates were derived from the published literature and using data from the outbreak of bluetongue in northern Europe in 2006. The model was validated using data on the spread of BTV in Great Britain during 2007. The sensitivity of model predictions to the shape of the transmission kernel was assessed.The model is able to replicate the dynamics of BTV in Great Britain. Although uncertainty remains over the precise shape of the transmission kernel and certain aspects of the vector, the modeling approach we develop constitutes an ideal framework in which to incorporate these aspects as more and better data become available. Moreover, the model provides a tool with which to examine scenarios for the spread and control of BTV in Great Britain

    The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury

    Get PDF
    In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are involved in migration and survival of MSCs in vitro, but little is known about their role in the in vivo therapeutic effectiveness of MSCs in renal ischemia/reperfusion (I/R) injury. Here, we evaluated the role of SDF-1-CXCR4/CXCR7 pathway in regulating chemotaxis, viability and paracrine actions of HP-MSCs in vitro and in vivo. Compared with normoxic preconditioning (NP), HP not only improved MSC chemotaxis and viability but also stimulated secretion of proangiogenic and mitogenic factors. Importantly, both CXCR4 and CXCR7 were required for the production of paracrine factors by HP-MSCs though the former was only responsible for chemotaxis while the latter was for viability. SDF-1α expression was upregulated in postischemic kidneys. After 24 h systemical administration following I/R, HP-MSCs but not NP-MSCs were selectively recruited to ischemic kidneys and this improved recruitment was abolished by neutralization of CXCR4, but not CXCR7. Furthermore, the increased recruitment of HP-MSCs was associated with enhanced functional recovery, accelerated mitogenic response, and reduced apoptotic cell death. In addition, neutralization of either CXCR4 or CXCR7 impaired the improved therapeutic potential of HP-MSCs. These results advance our knowledge about SDF-1-CXCR4/CXCR7 axis as an attractive target pathway for improving the beneficial effects of MSC-based therapies for renal I/R

    Evidence for a lack of a direct transcriptional suppression of the iron regulatory peptide hepcidin by hypoxia-inducible factors.

    Get PDF
    BACKGROUND: Hepcidin is a major regulator of iron metabolism and plays a key role in anemia of chronic disease, reducing intestinal iron uptake and release from body iron stores. Hypoxia and chemical stabilizers of the hypoxia-inducible transcription factor (HIF) have been shown to suppress hepcidin expression. We therefore investigated the role of HIF in hepcidin regulation. METHODOLOGY/PRINCIPAL FINDINGS: Hepcidin mRNA was down-regulated in hepatoma cells by chemical HIF stabilizers and iron chelators, respectively. In contrast, the response to hypoxia was variable. The decrease in hepcidin mRNA was not reversed by HIF-1alpha or HIF-2alpha knock-down or by depletion of the HIF and iron regulatory protein (IRP) target transferrin receptor 1 (TfR1). However, the response of hepcidin to hypoxia and chemical HIF inducers paralleled the regulation of transferrin receptor 2 (TfR2), one of the genes critical to hepcidin expression. Hepcidin expression was also markedly and rapidly decreased by serum deprivation, independent of transferrin-bound iron, and by the phosphatidylinositol 3 (PI3) kinase inhibitor LY294002, indicating that growth factors are required for hepcidin expression in vitro. Hepcidin promoter constructs mirrored the response of mRNA levels to interleukin-6 and bone morphogenetic proteins, but not consistently to hypoxia or HIF stabilizers, and deletion of the putative HIF binding motifs did not alter the response to different hypoxic stimuli. In mice exposed to carbon monoxide, hypoxia or the chemical HIF inducer N-oxalylglycine, liver hepcidin 1 mRNA was elevated rather than decreased. CONCLUSIONS/SIGNIFICANCE: Taken together, these data indicate that hepcidin is neither a direct target of HIF, nor indirectly regulated by HIF through induction of TfR1 expression. Hepcidin mRNA expression in vitro is highly sensitive to the presence of serum factors and PI3 kinase inhibition and parallels TfR2 expression
    corecore