304 research outputs found

    Poids des nouveau-nés et stratégies reproductrices des vipères européennes

    Get PDF
    The reproductive strategies of six species and two subspecies of European vipers are compared. Eighty eight clutches were examined. The reproductive effort, defined as the ratio of total litter weight over body weight of the female just after parturition, varies widely among individuals. This individual variation is in part due to the variable amount of fat accumulated by pregnant females during vitellogenesis, and therefore is associated with their nutrition during the gestation period. However, a genetic polymorphism cannot be ruled out in certain populations. The average reproductive effort of the varions species studied is 0.476 ; it does not significantly differ between the species concerned. Among the taxa studied, the average female body weight, just after parturition, ranges from 12.1 to 139.0 g, whereas that of the neonates ranges from 2.74 to 7.4 g, and their number from 2.0 to 8.9 per litter. Therefore the variation in neonatal body weight is smaller than that of the number of newborn per litter. Broadly speaking, small viper species bear fewer offsprings than larger ones, but these offspring are proportionately bigger. The distribution of the reproductive effort not only varies with the body size of the individual adult female ; it also depends on the species concerned, more particularly on the feeding habits and feeding opportunities of the newborn. Those which feed on invertebrates and, to a lesser extent, on small lizards, can afford to be small and numerous. This is not the case for the species whose young feed mostly on small mammals. Within a given taxon, the size of a litter generally increses with the body weight of the mother, whereas there is no correlation between the individual body weight of the newborn and that of their mother. The mortality rate of the young vipers during their first ten months of life varies greatly within the species concerned, at least in captivity. However, within a given species, the larger the newborn, the lower the mortality rate. In conclusion, the individual body weight of the newborn, and the variability of the reproductive effort among the various species of European vipers studied, depend on a number of different factors : female body size, feeding habits of the newborn, availability of prey, and mortality rates of the young in the postnatal period. The values observed under natural conditions obviously result from a compromise between different and often conflicting selective pressure

    Chemistry and structure of BaTiO3 ultra-thin films grown by different O2 plasma power

    Get PDF
    International audienceWe present a study of the chemical and atomic properties of 5 nm TiO2-terminated BaTiO3 (001) epitaxialfilms on Nb-doped SrTiO3, as a function of the atomic oxygen plasma power for film growth. Lowerplasma power produces non-stoichiometric films with oxygen vacancies and Ti3+ ions. The larger Ti3+ion radius and the in-plane clamping gives rise to an increase in the out-of-plane lattice parameter.XPS measures the Ti3+ concentration and the concomitant increase in dissociative water uptake in thefilm, giving rise to on-top OH adsorption on surface Ti, proton adsorption on surface oxygen, and a nearsurface Ba-OH environment

    Evidence for the formation of two phases during the growth of SrTiO3 on silicon

    No full text
    International audienceEpitaxial SrTiO3 (STO)/Si templates open a unique opportunity for the integration of ferroelectric oxides, such as BaTiO3 on silicon and for the realization of new devices exploiting ferroelectricity. STO itself has been shown as ferroelectric at room temperature when deposited in thin layers on Si, while bulk STO is tetragonal and, thus, ferroelectric below 105 K. Here, we demonstrate the coexistence, at room temperature, of strained cubic and tetragonal phases in thin STO/Si layers. The tetragonal STO phase presents a pronounced tetragonality for thicknesses up to 24 ML. Above this thickness, the strained cubic STO phase starts relaxing while the tetragonal STO phase progressively transits to cubic STO. The origin of the simultaneous formation of these two phases is analyzed and is attributed to oxygen segregation at the early stages of the growth

    Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nanometer to micrometer and mosaicity effects

    Full text link
    High-quality thermoelectric LaxSr1-xTiO3 (LSTO) layers (here with x = 0.2), with thicknesses ranging from 20 nm to 700 nm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1{\deg}), and present very low electrical resistivity (<5 x 10-4 ohm.cm at room temperature), one order of magnitude lower than commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of around -60 microV/K have been found for all films, accordingly. Finally, a correlation is given between the mosaicity and the (thermo)electric properties. These functional LSTO films can be integrated on Si in opto-microelectronic devices as transparent conductor, thermoelectric elements or in non-volatile memory structures

    Accurate automated quantitative imaging of tortoise erythrocytes using the NIS image analysis system

    Get PDF
    The standard method for assessing blood cell characteristics using an ocular micrometer is time-consuming and limited. We used the Nikon NIS Elements imaging software and May-Grünwald-Giemsa staining to determine whether automated image analysis is suitable for rapid and accurate quantitative morphometry of erythrocytes. Blood was collected during four seasons from 126 geometric tortoises and the blood smears were evaluated for cell (C) and nuclear (N) characteristics of the erythrocytes. We measured area, length (L), width (W), perimeter, elongation and pixelation intensity, and calculated L/W and N/C areas. Erythrocyte size differed among cohorts; females, the larger sex, had smaller erythrocytes than either males or juveniles. Males had more elongated erythrocytes than females and erythrocytes of adults were more elongated than those of juveniles. Erythrocyte size and shape influence the efficiency of gas exchange owing to surface area to volume ratios, which are greater for small, elongated cells than for large, round cells. The high N/C ratio and low pixelation intensities of males and juveniles indicate that they may have had more immature erythrocytes in their circulation than females. The use of pixelation intensity to indicate the presence of immature erythrocytes was validated by seasonal differences that corresponded to the biology of the tortoises. Pixelation intensity was lowest in winter. We found that automated image analysis is a rapid and reliable method for determining cell size and shape, and it offers the potential for distinguishing among developmental stages that differ in staining intensity. The method should be useful for rapid health assessments, particularly of threatened species, and for comparative studies among different vertebrates.Web of Scienc

    The cis-regulatory map of Shewanella genomes

    Get PDF
    While hundreds of microbial genomes are sequenced, the challenge remains to define their cis-regulatory maps. Here, we present a comparative genomic analysis of the cis-regulatory map of Shewanella oneidensis, an important model organism for bioremediation because of its extraordinary abilities to use a wide variety of metals and organic molecules as electron acceptors in respiration. First, from the experimentally verified transcriptional regulatory networks of Escherichia coli, we inferred 24 DNA motifs that are conserved in S. oneidensis. We then applied a new comparative approach on five Shewanella genomes that allowed us to systematically identify 194 nonredundant palindromic DNA motifs and corresponding regulons in S. oneidensis. Sixty-four percent of the predicted motifs are conserved in at least three of the seven newly sequenced and distantly related Shewanella genomes. In total, we obtained 209 unique DNA motifs in S. oneidensis that cover 849 unique transcription units. Besides conservation in other genomes, 77 of these motifs are supported by at least one additional type of evidence, including matching to known transcription factor binding motifs and significant functional enrichment or expression coherence of the corresponding target genes. Using the same approach on a more focused gene set, 990 differentially expressed genes derived from published microarray data of S. oneidensis during exposure to metal ions, we identified 31 putative cis-regulatory motifs (16 with at least one type of additional supporting evidence) that are potentially involved in the process of metal reduction. The majority (18/31) of those motifs had been found in our whole-genome comparative approach, further demonstrating that such an approach is capable of uncovering a large fraction of the regulatory map of a genome even in the absence of experimental data. The integrated computational approach developed in this study provides a useful strategy to identify genome-wide cis-regulatory maps and a novel avenue to explore the regulatory pathways for particular biological processes in bacterial systems

    Pathoadaptive mutations of Escherichia coli K1 in experimental neonatal systemic infection

    Get PDF
    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation

    Reappraisal of Vipera aspis Venom Neurotoxicity

    Get PDF
    BACKGROUND: The variation of venom composition with geography is an important aspect of intraspecific variability in the Vipera genus, although causes of this variability remain unclear. The diversity of snake venom is important both for our understanding of venomous snake evolution and for the preparation of relevant antivenoms to treat envenomations. A geographic intraspecific variation in snake venom composition was recently reported for Vipera aspis aspis venom in France. Since 1992, cases of human envenomation after Vipera aspis aspis bites in south-east France involving unexpected neurological signs were regularly reported. The presence of genes encoding PLA(2) neurotoxins in the Vaa snake genome led us to investigate any neurological symptom associated with snake bites in other regions of France and in neighboring countries. In parallel, we used several approaches to characterize the venom PLA(2) composition of the snakes captured in the same areas. [br/] METHODOLOGY/PRINCIPAL FINDINGS: We conducted an epidemiological survey of snake bites in various regions of France. In parallel, we carried out the analysis of the genes and the transcripts encoding venom PLA(2)s. We used SELDI technology to study the diversity of PLA(2) in various venom samples. Neurological signs (mainly cranial nerve disturbances) were reported after snake bites in three regions of France: Languedoc-Roussillon, Midi-Pyrénées and Provence-Alpes-Côte d'Azur. Genomes of Vipera aspis snakes from south-east France were shown to contain ammodytoxin isoforms never described in the genome of Vipera aspis from other French regions. Surprisingly, transcripts encoding venom neurotoxic PLA(2)s were found in snakes of Massif Central region. Accordingly, SELDI analysis of PLA(2) venom composition confirmed the existence of population of neurotoxic Vipera aspis snakes in the west part of the Massif Central mountains. [br/] CONCLUSIONS/SIGNIFICANCE: The association of epidemiological studies to genetic, biochemical and immunochemical analyses of snake venoms allowed a good evaluation of the potential neurotoxicity of snake bites. A correlation was found between the expression of neurological symptoms in humans and the intensity of the cross-reaction of venoms with anti-ammodytoxin antibodies, which is correlated with the level of neurotoxin (vaspin and/or ammodytoxin) expression in the venom. The origin of the two recently identified neurotoxic snake populations is discussed according to venom PLA(2) genome and transcriptome data
    corecore