139 research outputs found

    The Poplar Rust-Induced Secreted Protein (RISP) Inhibits the Growth of the Leaf Rust Pathogen Melampsora larici-populina and Triggers Cell Culture Alkalinisation

    Get PDF
    Plant cells secrete a wide range of proteins in extracellular spaces in response to pathogen attack. The poplar rust-induced secreted protein (RISP) is a small cationic protein of unknown function that was identified as the most induced gene in poplar leaves during immune responses to the leaf rust pathogen Melampsora larici-populina, an obligate biotrophic parasite. Here, we combined in planta and in vitro molecular biology approaches to tackle the function of RISP. Using a RISP-mCherry fusion transiently expressed in Nicotiana benthamiana leaves, we demonstrated that RISP is secreted into the apoplast. A recombinant RISP specifically binds to M. larici-populina urediniospores and inhibits their germination. It also arrests the growth of the fungus in vitro and on poplar leaves. Interestingly, RISP also triggers poplar cell culture alkalinisation and is cleaved at the C-terminus by a plant-encoded mechanism. Altogether our results indicate that RISP is an antifungal protein that has the ability to trigger cellular responses

    Impact and process assessment of the seven CITYLAB implementations

    Get PDF
    CITYLAB focuses on four axes that call for improvement and intervention: •Highly fragmented last-mile deliveries in city centres •Inefficient deliveries to large freight attractors and public administrations •Urban waste, return trips and recycling •Logistics sprawl Within these axes, the project supports seven implementations that are being tested, evaluated and rolled out. An implementation is defined as the process of preparing, testing and putting into practice a new service or a new way of operating or organising logistics activities. The objective of this report is to present an assessment of the effects and consequences of the implementations as they are conducted. For each case, we summarise the process leading to the application of a specific technical and managerial solution, and present the outcomes. For each implementation, we present •Problem and aim •Description of the solution •Implementation process •Effects and consequences •Challenges ahead •Lessons and generalisation of results This deliverable provides a complete picture of the evolvement of the implementations during the CITYLAB project and final versions of the process and impact assessment

    Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development

    Get PDF
    This study investigated the roles of sucrose synthase (SUS) in developing seeds and siliques of Arabidopsis thaliana. Enzyme activity assays showed that SUS activity was highest in developing whole siliques and young rosette leaves compared with other tissues including mature leaves, stems, and flowers. Surprisingly, quantitative PCR analyses revealed little correlation between SUS activity and transcript expression, which indicated the importance of examining the role of SUS at the protein level. Therefore, immunolocalization was performed over a developmental time course to determine the previously unreported cellular localization of SUS in Arabidopsis seed and silique tissues. At 3 d and 10 d after flowering (daf), SUS protein localized to the silique wall, seed coat, funiculus, and endosperm. By 13 daf, SUS protein was detected in the embryo and aleurone layer, but was absent from the seed coat and funiculus. Starch grains were also present in the seed coat at 3 and 10 daf, but were absent at 13 daf. Co-localization of SUS protein and starch grains in the seed coat at 3 and 10 daf indicates that SUS may be involved in temporary starch deposition during the early stages of seed development, whilst in the later stages SUS metabolizes sucrose in the embryo and cotyledon. Within the silique wall, SUS localized specifically to the companion cells, indicating that SUS activity may be required to provide energy for phloem transport activities in the silique wall. The results highlight the diverse roles that SUS may play during the development of silique and seed in Arabidopsis

    Regulation of differentiation of nitrogen-fixing bacteria by microsymbiont targeting of plant thioredoxin s1

    Get PDF
    Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions

    (Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula

    Get PDF
    Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes

    C. PRESL) at the transcriptional level.

    Get PDF
    This paper investigates differences in gene expression among the two Thlaspi caerulescens ecotypes La Calamine (LC) and Lellingen (LE) that have been shown to differ in metal tolerance and metal uptake. LC originates from a metalliferous soil and tolerates higher metal concentrations than LE which originates from a non-metalliferous soil. The two ecotypes were treated with different levels of zinc in solution culture, and differences in gene expression were assessed through application of a cDNA microarray consisting of 1,700 root and 2,700 shoot cDNAs. Hybridisation of root and shoot cDNA from the two ecotypes revealed a total of 257 differentially expressed genes. The regulation of selected genes was verified by quantitative reverse transcriptase polymerase chain reaction. Comparison of the expression profiles of the two ecotypes suggests that LC has a higher capacity to cope with reactive oxygen species and to avoid the formation of peroxynitrite. Furthermore, increased transcripts for the genes encoding for water channel proteins could explain the higher Zn tolerance of LC compared to LE. The higher Zn tolerance of LC was reflected by a lower expression of the genes involved in disease and defence mechanisms. The results of this study provide a valuable set of data that may help to improve our understanding of the mechanisms employed by plants to tolerate toxic concentrations of metal in the soil

    Monothiol Glutaredoxins Can Bind Linear [Fe3S4](+) and [Fe4S4](2+) Clusters in Addition to [Fe2S2](2+) Clusters: Spectroscopic Characterization and Functional Implications

    No full text
    International audienceSaccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2](2+) cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically, after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4](+) cluster. The excited-state electronic properties and ground-state electronic and vibrational properties of the linear [Fe3S4](+) cluster have been characterized using UV-vis absorption/CD/MCD, EPR, Mossbauer, and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4](+) cluster with properties similar to those reported for synthetic linear [Fe3S4](+) clusters and the linear [Fe3S4](+) clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2](2+) clusters, rather than linear [Fe3S4](+) clusters or mixtures of linear [Fe3S4](+) and [Fe2S2](2+) clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4](2+) cluster that is competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4](+) and [Fe4S4](2+) clusters in Grx5 has been assessed by spectroscopic, mutational, and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4](+) clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4](2+) cluster-containing proteins are discussed in light of these results
    corecore