111 research outputs found

    Quantitative trait loci of stripe rust resistance in wheat

    Get PDF
    KEY MESSAGE: Over 140 QTLs for resistance to stripe rust in wheat have been published and through mapping flanking markers on consensus maps, 49 chromosomal regions are identified. ABSTRACT: Over thirty publications during the last 10 years have identified more than 140 QTLs for stripe rust resistance in wheat. It is likely that many of these QTLs are identical genes that have been spread through plant breeding into diverse backgrounds through phenotypic selection under stripe rust epidemics. Allelism testing can be used to differentiate genes in similar locations but in different genetic backgrounds; however, this is problematic for QTL studies where multiple loci segregate from any one parent. This review utilizes consensus maps to illustrate important genomic regions that have had effects against stripe rust in wheat, and although this methodology cannot distinguish alleles from closely linked genes, it does highlight the extent of genetic diversity for this trait and identifies the most valuable loci and the parents possessing them for utilization in breeding programs. With the advent of cheaper, high throughput genotyping technologies, it is envisioned that there will be many more publications in the near future describing ever more QTLs. This review sets the scene for the coming influx of data and will quickly enable researchers to identify new loci in their given populations

    Dementia in residential care: education intervention trial (DIRECT); protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is scope to improve the quality of life (QOL) of people with dementia living in residential care facilities (RCF). The DIRECT study will determine if delivery of education to General Practitioners (GPs) and care staff improves the quality of life of residential care recipients with cognitive impairment.</p> <p>Methods/Design</p> <p>A prospective randomised controlled trial conduced in residential aged care facilities in the metropolitan area of Perth, Western Australia. Participants are care facility residents, aged 65 years and older and with mini-mental state examination scores less than 25. GPs and care facility staff have been independently randomised to intervention or control groups. An education programme, designed to meet the perceived needs of learners, will be delivered to GPs and care staff in the intervention groups. The primary outcome of the study will be quality of life of the people with dementia, measured using the QOL-Alzheimer's Disease Scale (QOL-AD) and Alzheimer Disease Related QOL Scale (ADRQL), 4 weeks and 6 months after the conclusion of the education intervention.</p> <p>Results</p> <p>Recruitment of 351 people with dementia, cared for by staff in 39 residential facilities and 55 GPs, was undertaken between May 2007 and July 2008. Collection of baseline data is complete. Education has been delivered to GPs and Care staff between September 2008 and July 2009. Follow- up data collection is underway.</p> <p>Discussion</p> <p>The study results will have tangible implications for proprietors, managers and staff from the residential care sector and policy makers. The results have potential to directly benefit the quality of life of both patients and carers.</p> <p>Trial registration</p> <p>These trial methods have been prospectively registered (ACTRN12607000417482).</p

    Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL

    Get PDF
    BACKGROUND: Next-generation sequencing technologies provide new opportunities to identify the genetic components responsible for trait variation. However, in species with large polyploid genomes, such as bread wheat, the ability to rapidly identify genes underlying quantitative trait loci (QTL) remains non-trivial. To overcome this, we introduce a novel pipeline that analyses, by RNA-sequencing, multiple near-isogenic lines segregating for a targeted QTL. RESULTS: We use this approach to characterize a major and widely utilized seed dormancy QTL located on chromosome 4AL. It exploits the power and mapping resolution afforded by large multi-parent mapping populations, whilst reducing complexity by using multi-allelic contrasts at the targeted QTL region. Our approach identifies two adjacent candidate genes within the QTL region belonging to the ABA-induced Wheat Plasma Membrane 19 family. One of them, PM19-A1, is highly expressed during grain maturation in dormant genotypes. The second, PM19-A2, shows changes in sequence causing several amino acid alterations between dormant and non-dormant genotypes. We confirm that PM19 genes are positive regulators of seed dormancy. CONCLUSIONS: The efficient identification of these strong candidates demonstrates the utility of our transcriptomic pipeline for rapid QTL to gene mapping. By using this approach we are able to provide a comprehensive genetic analysis of the major source of grain dormancy in wheat. Further analysis across a diverse panel of bread and durum wheats indicates that this important dormancy QTL predates hexaploid wheat. The use of these genes by wheat breeders could assist in the elimination of pre-harvest sprouting in wheat.Jose M. Barrero, Colin Cavanagh, Klara L. Verbyla, Josquin F.G. Tibbits, Arunas P. Verbyla, B. Emma Huang, Garry M. Rosewarne, Stuart Stephen, Penghao Wang, Alex Whan, Philippe Rigault, Matthew J. Hayden, and Frank Guble

    Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species.

    Get PDF
    Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government’s Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could ‘clean’ their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ2 = 117.24, p < 0.001; 1 day χ2 = 95.68, p < 0.001; 8 days χ2 = 12.16, p < 0.001 and 16 days χ2 = 7.58, p < 0.001). Drying caused significantly higher mortality than the control (no action) from day 4 (χ2 = 8.49, p < 0.01) onwards. In the absence of hot water or drying, 6/7 of these species survived for 16 days, highlighting the importance of good biosecurity practice to reduce the risk of accidental spread. In an additional experiment the minimum lethal temperature and exposure time in hot water to cause 100 % mortality in American signal crayfish (Pacifastacus leniusculus), was determined to be 5 min at 40 °C. Hot water provides a simple, rapid and effective method to clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns

    Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection

    Get PDF
    Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B 12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents â 1/475% of the genus-level bacterial and archaeal taxa present in the rumen. © 2018 Nature Publishing Group. All rights reserved
    corecore