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Abstract In common with many plants native to low P soils,
jarrah (Eucalyptus marginata) develops toxicity symptoms
upon exposure to elevated phosphorus (P). Jarrah plants can
establish arbuscular mycorrhizal (AM) and ectomycorrhizal
(ECM) associations, along with a non-colonizing symbiosis
described recently. AM colonization is known to influence the
pattern of expression of genes required for P uptake of host
plants and our aim was to investigate this phenomenon in
relation to P sensitivity. Therefore, we examined the effect on
hosts of the presence of AM and ECM fungi in combination
with toxic pulses of P and assessed possible correlations
between the induced tolerance and the shoot P concentration.
The P transport dynamics of AM (Rhizophagus irregularis
and Scutellospora calospora), ECM (Scleroderma sp.), non-
colonizing symbiosis (Austroboletus occidentalis), dual my-
corrhizal (R. irregularis and Scleroderma sp.), and non-
mycorrhizal (NM) seedlings were monitored following two
pulses of P. The ECM and A. occidentalis associations signif-
icantly enhanced the shoot P content of jarrah plants growing
under P-deficient conditions. In addition, S. calospora,
A. occidentalis, and Scleroderma sp. all stimulated plant

growth significantly. All inoculated plants had significantly
lower phytotoxicity symptoms compared to NM controls
7 days after addition of an elevated P dose (30 mg P kg−1

soil). Following exposure to toxicity-inducing levels of P, the
shoot P concentration was significantly lower in
R. irregularis-inoculated and dually inoculated plants com-
pared to NM controls. Although all inoculated plants had
reduced toxicity symptoms and there was a positive linear
relationship between rank and shoot P concentration, the
protective effect was not necessarily explained by the type
of fungal association or the extent of mycorrhizal
colonization.

Keywords Arbuscular mycorrhiza (AM) . Ectomycorrhiza
(ECM) . Jarrah . Phosphorus (P) toxicity . Tolerance . P pulse

Introduction

Phosphorus (P) is a macronutrient essential for plant growth. It
is a structural component of nucleic acids and phospholipids,
and is involved in many cellular functions such as energy
transfer and the regulation of enzyme activity. The availability
of P to plants is, however, limited in many soils. Australia,
sub-Saharan Africa, tropical Asia and South America are
among the main areas that have P-deficient soils (Sanchez
and Buol 1975; Runge-Metzger 1995; Handreck 1997;
Trolove et al. 2003). P deficiency is considered to be the main
factor determining plant productivity and species diversity in
ancient landscapes (Lambers et al. 2010).

Many plant species have mechanisms to enhance the ex-
traction of P from the soil. Arbuscular mycorrhiza (AM),
ectomycorrhiza (ECM) and cluster root formation are among
the main P acquisition strategies available to plants (Lambers
and Shane 2007; Smith and Read 2008; Lambers et al. 2009).
AM fungi are found in the majority of terrestrial ecosystems.
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In a survey of the literature, they were shown to colonize 74%
of angiosperm species from 336 plant families representing
99 % of flowering plants (Brundrett 2009). ECM fungi estab-
lish the second most widespread form of mycorrhiza and have
an intimate association with many woody plant species from
about 30 families (Smith and Read 2008).

Plant species that are adapted to P-deficient soils can be
exposed to elevated P conditions via nutrient flushing, soil
wetting, fertilization and also when new plantations are
established on previously fertilized soils having high levels
of P (Handreck 1997; Trolove et al. 2003). Plants that natu-
rally grow in low P soils, particularly those fromAustralia and
South Africa, can develop toxicity symptoms upon exposure
to elevated levels of P (Shane et al. 2004a, b; Hawkins et al.
2008). The P toxicity response occurs in at least some low-P
adapted species because they cannot down-regulate their net P
uptake, perhaps as a consequence of having evolved on P-
impoverished soils over millions of years (Shane et al. 2004a;
Hawkins et al. 2008; Lambers et al. 2011). P-sensitive species
are found in the Fabaceae, Haemodoraceae, Mimosaceae,
Myrtaceae, Proteaceae, Rutaceae, and generally are a feature
of heaths and other sclerophyllous plant communities (Specht
and Groves 1966; Grundon 1972; Heddle and Specht 1975;
Specht et al. 1977; Specht 1981; Dell et al. 1987; Handreck
1997; Shane et al. 2004b; Thomson and Leishman 2004;
Hawkins et al. 2008). Depending on the plant species
(Shane et al. 2004b), development of P toxicity symptoms
can occur at a shoot P concentration of less than 1 mg P g−1

DW, such as in Banksia ericifolia (Parks et al. 2000), or more
than 40 mg P g−1 DW, as reported for Telopia speciosissima
(Grose 1989).

The response of plants to P fertilization may be linked to
their response to root colonization by mycorrhizal fungi, but
the details of this relationship are not clear. Although mycor-
rhizal symbioses are renowned for increasing nutrient uptake
in nutrient-deficient plants, they also function to favour the
growth of plants exposed to toxic concentrations of heavy
metals or certain essential trace elements such as Zn
(Jentschke and Godbold 2000; Hildebrandt et al. 2007).
Mycorrhizal fungi can modify the P uptake in the host plant
by inducing the plant to reduce the expression of genes
encoding high-affinity phosphate transporter (PHT) proteins
(Liu et al. 1998; Burleigh and Harrison 1999; Rosewarne et al.
1999; Burleigh 2001; Karandashov and Bucher 2005). Much
more information about shoot P accumulation and toxicity
development is required for plants that are commonly used in
combination with P fertilizer in the restoration of native eco-
systems (Koch 2007).

This research was carried out to clarify the possible link
between mycorrhizal associations and P tolerance in
Eucalyptus marginata (jarrah), an important species in forest
restoration, suspected of high P sensitivity. The present study
is the second stage of an experiment of which the first stage

has been published elsewhere (Kariman et al. 2012). A nurse-
pot system was used to establish mycorrhizal associations of
jarrah with the AM species R. irregularis (Błaszk., Wubet,
Renker & Buscot) C. Walker & A. Schüßler comb. nov. and
S. calospora Nicol. & Gerd., the ECM fungus Scleroderma
sp., a dual (AM and ECM) treatment of R. irregularis and
Scleroderma sp. and a non-colonizing fungus A. occidentalis
Watling & N.M. Greg. As previously described (Kariman
et al. 2012), the mycorrhizal colonization of nurse seedlings
were 2.3, 29 and 28.3 % for R. irregularis (AM), S. calospora
(AM) and Scleroderma sp. (ECM) treatments, respectively.
The dual treatment had less than 1 % AM and no ECM
colonization, and A. occidentalis did not colonize jarrah roots.
The positive growth responses were observed even when only
one replicate was colonized (out of three, Scleroderma sp.) or
there was no sign of root colonization (A. occidentalis). Our
subsequent study unearthed a novel plant–fungus symbiosis
between jarrah and A. occidentalis, in which plant growth and
nutrient acquisition is substantially improved without forming
mycorrhizal structures (Kariman et al. 2014). It is now more
evident that root colonization is not necessarily required for
positive physiological responses in plant–fungus associations
(Neumann 1959; Kariman et al. 2012, 2014). In the current
study, we explored AM, ECM and the A. occidentalis associ-
ations in jarrah seedlings along the P toxicity continuum. The
main aims of this study were (i) to establish the role of the
fungi in stimulating P uptake under P-deficient conditions; (ii)
to determine the ability of the selected fungi to confer toler-
ance against toxic pulses of P; (iii) to reveal possible correla-
tions between the induced tolerance and the shoot P concen-
tration, the type of fungal association and the extent of root
colonization and (iv) to ascertain the effect of these fungal
species on plant growth.

Materials and methods

Plant materials, fungal isolates and inoculum production

Jarrah capsules were obtained from a single tree near
Dwellingup, Western Australia. Seeds were released from the
capsules by incubating at 42 °C for 3 days. The four fungal
isolates used were S. calospora, A. occidentalis and
Scleroderma sp. from west Australian habitats and
R. irregularis (DAOM197198), an exotic isolate from Pont
Rouge, Québec, Canada (Stockinger et al. 2009). Details about
the fungal isolates and inoculum production were as previously
described (Kariman et al. 2012).

Nurse-pot system

A nurse-pot system was developed for the study of dual my-
corrhizal associations of jarrah seedlings (Kariman et al. 2012).
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A polyester mesh bag (diameter and depth, 17 by 17 cm) with
40 μm pore size was filled with 3.75 kg of double-pasteurized
washed river sand and placed in the centre of a plastic pot
(diameter and depth, 23 by 25 cm). The matrix outside the
mesh bag was filled with 4.5 kg of a mixture of double-
pasteurized washed river sand and mycorrhizal inoculums.
AM inocula (R. irregularis and S. calospora) were bulked by
growing leek plants in a mixture of AM inoculum and double-
pasteurized washed river sand (1:9 w/w) for 4 months. A
vermiculite-based medium was used to produce hyphal inocu-
lum for Scleroderma sp. and A. occidentalis (see Kariman et al.
2012 for more details). To provide equivalent conditions for all
treatments, AM plants received sterilized ECM inoculum and
ECM- and A. occidentalis-treated plants were supplied with
sterilized AM inoculum. Non-mycorrhizal (NM) plants also
received sterilized AM and ECM inocula. The dual treatment
was supplied with R. irregularis (AM) and Scleroderma sp.
(ECM) inocula. Three replicate nurse-pots were considered for
each treatment in a completely randomized design. Four pre-
germinated jarrah seeds were planted outside the mesh bag and
designated as nurse seedlings. Our preliminary experiment
revealed that jarrah plants would be colonized 10 weeks after
inoculation with mycorrhizal fungi. Therefore, after 10 weeks
growth of nurse seedlings, four NM test seedlings of the same
age as nurse seedlings were transplanted into the mesh bag and
one test seedling was harvested from each nurse-pot every
7 days to check the colonization, with the final test seedling
removed at week 14. Table 1 provides the mycorrhizal coloni-
zation of the final test seedling and the first nurse seedling at
week 14, both of which were harvested 1 day before addition of
the first P pulse (Kariman et al. 2012). The present study deals
with nurse seedlings after removing all four test seedlings from
nurse-pots at the end of week 14. Hence, we use term “seed-
ling” to refer to “nurse seedlings” in this manuscript. The AM
colonization was measured using the gridline intersect method
and at least 300 intersects were examined per sample

(Giovannetti and Mosse 1980). The ECM colonization was
quantified by determining the percentage of ECM root tips
(Gehring and Whitham 1994) and a minimum of 500 root tips
were counted per sample. The experiment was conducted from
June to September 2010 in an unheated glasshouse with the
average daytime temperature of 20 °C. All plants received the
1× modified Long Ashton solution minus P (10 mL kg−1 soil)
once a fortnight started 2 weeks after planting: K2SO4 2 mM,
MgSO4 ·7H2O 1.5 mM, CaCl2 ·2H2O 3 mM, FeEDTA
0.1 mM, (NH4)2SO4 4 mM, NaNO3 8 mM, H3BO3 46 μM,
MnCl2·4H2O 9 μM, ZnSO4·7H2O 8 μM, CuSO4·5H2O
0.3 μM and Na2MoO4·2H2O 0.01 μM (Cavagnaro et al.
2001).

P addition and toxicity analysis

One 14-week-old seedling from the former nurse treatments
was harvested from each pot for shoot P analysis before
addition of P pulses. The washed river sand used for plant
culture contained less than 6 mg P kg−1 (data not shown).
Therefore, the seedlings grown in the absence of P addition
were grown under P-deficient conditions according to previ-
ous reports on eucalypts (Burgess et al. 1994; Aggangan et al.
1996). One day after harvesting the first seedling, the first P
pulse was added to all pots at the ratio of 10 mg P kg−1 soil (as
KH2PO4 in aqueous solution). One seedling was harvested
from each pot 1 day after addition of the P pulse to measure
the shoot P concentration. Seven days later, a second P pulse
of 30 mg P kg−1 soil was added. The last seedling (16 weeks
old) was harvested from all pots 1 week after adding the
second P pulse to quantify P toxicity symptoms and investi-
gate growth response and P accumulation under high P con-
ditions. The P toxicity symptoms (including chlorotic and
necrotic areas on leaves) were quantified by ranking plants
into six classes from 0 to 5, where 0 corresponded to the
absence of toxicity symptoms, 1 from traces to 20 % of
symptomatic leaf tissue area (SLTA), 2 from 20 to 40 %
SLTA, 3 from 40 to 60 % of SLTA, 4 from 60 to 80 % of
SLTA and 5 more than 80 % of SLTA.

Measured quantities of ground dried shoot tissues (about
200 mg) were digested in 5 mL nitric–perchloric acid solution
(4:1v/v) and the P concentration was determined using a
vanado-molybdate yellow method (Jackson 1973). The
amount of P that accumulated in the shoot tissues (mg P g−1

DW) following each P pulse was calculated based on the
differences in shoot P concentration between two subsequent
harvests and was designated as the incremental shoot P
concentration.

Experimental design and data analysis

The experiment was conducted in a completely randomized
design with three replicates. There were two AM treatments

Table 1 Mycorrhizal colonization of 14-week-old test and nurse seed-
lings 1 day before addition of the first P pulse (10 mg P kg−1 soil), as also
reported in Kariman et al. 2012

Treatments Percentage of colonization

Test
seedlings

Nurse
seedlings

NM controls NC NC

Rhizophagus irregularis (AM) NC 2.3±0.8

Scutellospora calospora (AM) 8.2±6.3 29±4.8

Austroboletus occidentalis NC NC

Scleroderma sp. (ECM) 28.9±28.9 28.3±28.3

Dual: Rhizophagus irregularis (AM) NC 0.8±0.6

& Scleroderma sp. (ECM) NC NC

NC, no colonization, values are means ± SE (n=3)

Mycorrhiza (2014) 24:501–509 503



(R. irregularis and S. calospora), a non-colonizing treatment
(A. occidentalis), an ECM treatment (Scleroderma sp.), a dual
treatment (R. irregularis and Scleroderma sp.) and NM con-
trols. One-way ANOVA and correlation analysis were per-
formed using the Statistical Analysis System (SAS) version
9.2 (SAS Institute, Inc.; Cary NC, USA) software package.
Means were separated using LSD at p<0.05 in all datasets
except for biomass data, where we used two p levels (p<0.05
and p<0.10).

Results

The ECM and non-colonizing fungi enhanced P uptake
under P-deficient conditions

We assessed the shoot P content of 14-week-old seedlings
(former nurse seedlings) prior to the addition of P to study the
effect of fungal treatments on P nutrition under P-deficient
conditions (Fig. 1). Jarrah plants inoculated with the ECM
fungus (Scleroderma sp.) and the non-colonizing fungus
(A. occidentalis) had significantly higher shoot P content than
the NM controls and the other inoculated treatments (p<0.05).

P sensitivity in jarrah is dependent on mycorrhizal fungi

Fourteen-week-old jarrah seedlings developed mild and
patchy symptoms of P toxicity within 3 days of being exposed
to 10 mg P kg−1 soil. The symptoms were more severe in
plants exposed to a higher dose of 30 mg P kg−1 soil 7 days
after the first dose. Irregular chlorotic spots appeared mainly
around the midrib and progressed toward the leaf margins
(Fig. 2). However, the pattern and development of symptoms
differed among individual plants. All 16-week-old plants in-
oculated with live fungi had significantly reduced toxicity

symptoms (p<0.05) when examined 7 days after the second
P addition compared to NM control plants (Fig. 3). The extent
of the toxicity symptoms did not differ between plants inoc-
ulated with different fungi.

Mycorrhizal fungi ameliorate the toxic accumulation of P
in jarrah shoots

The shoot P concentration of jarrah plants was determined
before and after adding two pulses of P (Fig. 4). Plants
inoculated with Scleroderma sp. had significantly (p<0.05)
higher shoot P concentration than those inoculated with
R. irregularis 1 day before addition of the first P pulse;
however, there was no significant difference (p<0.05) be-
tween shoot P concentrations among other treatments
(Fig. 4, open bars). All inoculated treatments except
R. irregularis had slightly (not significant) higher shoot P
concentration thanNM controls. There were no toxicity symp-
toms in any of the treatments 1 day after adding the first P
pulse. In each case, the shoot tissues had a concentration of
less than 1.8 mg P g−1 DW and there was no significant
difference across treatments (Fig. 4, checkered bars). The
incremental increase in shoot P concentration was significant-
ly lower (p<0.05) in plants inoculated with A. occidentalis
and Scleroderma sp. compared to the NM controls (Fig. 5,
closed bars).

The severe P toxicity symptoms in plants 7 days after
adding the second P pulse (Fig. 3) correlated with shoot P
concentrations ranging from 5.5 to 9.5 mg P g−1 DW (Fig. 4,
closed bars). Thus, the P toxicity symptoms developed at a
shoot P concentration somewhere between 1.8 and 5.5 mg
P g−1 DW. Generally, there was a moderately well fitted but
significant positive linear relationship between shoot P con-
centration and toxicity symptoms (r=0.62, p=0.0064; data
not shown) and the shoot P concentrations trended to be lower
for 16-week-old plants inoculated with fungi compared to NM
plants 7 days after the addition of the second dose of P (Fig. 4,
closed bars); however, only R. irregularis and dually inocu-
lated plants had significantly lower shoot P concentration
compared to NM seedlings (p<0.05). During the week after
the second P addition (between second and third harvests),
plants inoculated with R. irregularis and the dual inoculum
had significantly smaller increases in shoot P concentration
(p<0.05) than the NM control plants (Fig. 5, open bars).

Mycorrhizal fungi can enhance jarrah biomass production

The shoot dry biomass significantly increased in jarrah plants
inoculated with S. calospora (p<0.10), A. occidentalis
(p<0.05) or Scleroderma sp. (p<0.05) after 16 weeks growth
and two P fertilizations, compared to NM controls (Fig. 6). A
significant increase was also observed in the root dry biomass
of plants inoculated with S. calospora, A. occidentalis or
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Fig. 1 Shoot P content of jarrah seedlings growing under P-deficient
conditions after 14 weeks growth (p = 0.0003). Plants were inoculated
with the indicated fungi (except the un-inoculated control plants). The
dual treatment was co-inoculated with R. irregularis (AM) and
Scleroderma sp. (ECM). Bars labelled with different letters are signifi-
cantly different at p<0.05. Error bars are SE (n = 3)

504 Mycorrhiza (2014) 24:501–509



Scleroderma sp., compared to NM plants (p<0.05). However,
no positive growth response was observed in R. irregularis
and dually inoculated treatments. Furthermore, a significant
depression of root system growth was observed in seedlings
co-inoculated with R. irregularis and Scleroderma sp.
(p<0.10).

Discussion

Mycorrhiza and P uptake under P-deficient conditions

The presence of A. occidentalis and Scleroderma sp. caused a
dramatic increase in shoot P content of jarrah plants grown
under P-deficient conditions in keeping with the existing
literature showing improved plant P nutrition in other euca-
lypt–ECM symbioses (Bougher et al. 1990; Jones et al. 1998).
The facilitation of P uptake by A. occidentalis is remarkable as
this fungus did not form mycorrhizal structures with jarrah
roots; however, fungal hyphae were observed around the roots

(Kariman et al. 2012). Furthermore, A. occidentalis did not
induce short root formation or any other observable morpho-
logical changes to the root system. These results indicate that
the P uptake of plants does not necessarily correlate with the
root colonization ability of fungal partners. Our previous
study demonstrated that a higher carboxylate concentration
in the rhizosphere soil correlated with the enhanced shoot P
content of jarrah plants associated with A. occidentalis
(Kariman et al. 2014). Here, the improved P nutrition of
ECM plants (Scleroderma sp.) could be due to exudation of
carboxylates to release P from primary minerals (Landeweert
et al. 2001) and/or P-mobilizing enzymes that release P from
soil organic matter (Bending and Read 1995; Tibbett and
Sanders 2002). It would be interesting to investigate how the
mentioned mechanisms are regulated under P toxicity
conditions.

By 14 weeks, neither AM fungus caused a significant
increase in the shoot P content of jarrah plants growing under
P-deficient conditions. This result is in agreement with a
report showing that AM fungi have a low capacity to improve
the P nutrition of eucalypts (Jones et al. 1998). However, at
this stage, plants inoculated with S. calospora had significant-
ly higher shoot biomass than NM controls, whereas no posi-
tive response was observed for the R. irregularis treatment
(Kariman et al. 2012). In the dual treatment, the AM fungus

a b c

Fig. 2 Development of P toxicity symptoms on an individual leaf from
an NM jarrah seedling: a 1 day before (rank 0); b 3 days after (rank 1);
and c 7 days after the second P dose (rank 3). Fourteen-week-old jarrah

seedlings were exposed to a single dose of 10 mg P kg−1 soil for 7 days
before subjecting to a second dose of 30 mg P kg−1 soil for 7 days
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Fig. 3 The average phytotoxicity rank (p = 0.1310) of 16-week-old
jarrah plants 7 days after subjecting to the second dose of P (30 mg
P kg−1 soil). Fourteen-week-old jarrah seedlings were exposed to a single
dose of 10 mg P kg−1 soil for 7 days before subjecting to the second dose
of P. The P toxicity symptoms were quantified by ranking plants into six
classes from 0 to 5, where 0 corresponded to the absence of toxicity
symptoms, 1 from traces to 20 % of symptomatic leaf tissue area (SLTA),
2 from 20 to 40 % SLTA, 3 from 40 to 60 % of SLTA, 4 from 60 to 80 %
of SLTA and 5 more than 80 % of SLTA. Plants were inoculated with the
indicated fungi and grown as described in the legend for Fig. 1. Bars
labelled with the same letter are not significantly different at p<0.05.
Error bars are SE (n = 3)
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Fig. 4 Shoot P concentration of jarrah seedlings 1 day before first P
addition (open bars, p = 0.1434), 1 day after first P addition (checkered
bars, p = 0.8798) and 7 days after the second P addition (closed bars, p =
0.0400). Plants were inoculated with fungi and grown as indicated in the
legend to Fig. 1. Bars from each harvest labelled with different letters are
significantly different at the p<0.05 level. Error bars are SE (n = 3)
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(R. irregularis) seemingly dominated the outcome, as there
was neither an increase in the shoot P content nor a positive
growth response.

Mycorrhiza and tolerance to P toxicity

All four fungal isolates tested induced tolerance to P toxicity
in jarrah, as judged by the reduction in P toxicity symptoms.
The induced tolerance, however, was not always accompanied
by a lower shoot P concentration in the inoculated plants. The
shoot P concentration of jarrah plants growing under P-
deficient conditions was less than 1.5 mg P g−1 DWin keeping
with previous reports for jarrah (Dell et al. 1987) and
Eucalyptus urophylla (Aggangan et al. 1996). The symptoms
of P toxicity in jarrah had developed at a shoot P concentration
between 1.8 and 5.5 mg P g−1 DW, indicating that jarrah is a

highly P-sensitive species compared to other plants (Shane
et al. 2004b and references therein). A single dose of P
fertilizer equivalent to an elemental dose of 40 kg ha−1 is
routinely applied to jarrah forest restoration (Koch and
Samsa 2007). While it is impossible to exactly correlate this
field dose with our pot growth experiments, especially as the
soil conditions differ, it is clear from our results that a very low
dose of P can have a harmful effect on jarrah, especially if the
plants are not involved in fungal associations. This conclusion
then produces an important consideration for the management
of jarrah forest restoration.

Smith et al. (2003, 2004) showed that there had been a
misevaluation of the contribution made by mycorrhizal fungi
to P uptake by host plants, such that the mycorrhiza-mediated
P uptake could be much higher than previously presumed.
Indeed, P can be almost exclusively supplied to plants via the
mycorrhizal pathway for some plant–fungus combinations
(Smith et al. 2003, 2004). Accordingly, the low shoot P
concentration in plants inoculated with R. irregularis (alone
or in combination with Scleroderma sp.) after the second P
pulse could be due to the low contribution of mycorrhizal P
uptake pathway, apparently because of very low colonization.
Another potential explanation for these results is that coloni-
zation caused a down-regulation of P acquisition capacity in
jarrah as established for AM symbioses (Liu et al. 1998;
Burleigh and Harrison 1999; Rosewarne et al. 1999;
Burleigh 2001; Karandashov and Bucher 2005).

Plants inoculated with S. calospora, A. occidentalis or
Scleroderma sp. trended toward a lower shoot P concentration
than NM seedlings, apparently resulting from higher biomass.
This slight difference in shoot P concentration (20–30%) may
be linked to the reduced toxicity symptoms observed. In
keeping with our results, Nazeri et al. (2013) demonstrated
that AM symbioses reduced the shoot P concentration after a
moderate P pulse (15 mg P kg−1 soil) in five legume species
including Kennedia prostrata, Cullen australasicum,
Bituminaria bituminosa, Medicago sativa and Trifolium

a ab
abc

bc c
abc

a

b ab ab

ab

b

0

1

2

3

4

5

6

7

8

9

10
In

cr
em

en
ta

l s
ho

ot
 P

 c
on

ce
nt

ra
ti

on
 

(m
g 

g-1
D

W
)

Fig. 5 Incremental increase in shoot P concentration for jarrah seedlings
1 day after the first P addition (closed bars, p = 0.1391) and 7 days after the
second P addition (open bars, p = 0.0529). Plants were inoculated with
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subterraneum, which was due to reducedmovement of P from
root to shoot. Different combinations of these potential mech-
anisms of P tolerance might be active to various extents in the
different symbioses. Our results indicate that the AM fungus
R. irregularis is more effective than the tested ECM and non-
colonizing fungi at reducing the jarrah shoot P concentration
during exposure to elevated P conditions. These results sug-
gest that the AM partner R. irregularis may have a low
capacity to provide P for the host plant than the ECM and
non-colonizing partners.

One implication of our findings is that pre-inoculation of
jarrah seedlings in nurseries with both AM and ECM fungi
would be helpful in minimizing P toxicity symptoms. This
would be applicable where new plantations are being
established in soils over-fertilized with P. However, the exotic
AM fungus R. irregularis had no positive effects on jarrah
shoot and root biomass. Furthermore, R. irregularis inhibited
ECM colonization and function (Kariman et al. 2012) in
dually inoculated plants, resulting in the smallest root system
amongst treatments, which would affect the establishment and
anchoring of plants. For optimal plantation or restoration
success, application of mixed endemic AM populations from
comparable undisturbed soils should be assessed for effective-
ness in terms of both positive growth responses and P toler-
ance in jarrah.

Biomass production

Plants inoculated with A. occidentalis and Scleroderma sp.
had the largest biomass among the treatments regardless of
their colonization extent confirming the studies showing sub-
stantial effects of ECM fungi on eucalypt growth (Bougher
et al. 1990; Thomson et al. 1994; Jones et al. 1998). To date,
several studies have shown significant contribution of fungi to
plant growth by forming non-typical structures or without
forming any mycorrhizal structures (Neumann 1959;
Warcup and McGee 1983; Kope and Warcup 1986; Kariman
et al. 2012, 2014). High concentration of carboxylates in the
rhizosphere soil is one of the mechanisms linked with positive
growth responses in a symbiosis with no root colonization
(Kariman et al. 2014). Protons, phenolic compounds and P-
mobilizing enzymes such as acid phosphatases are among the
other common factors that enhance P availability in soil lead-
ing to improved plant growth and P acquisition (Bending and
Read 1995; Landeweert et al. 2001; Tibbett and Sanders
2002).

TwoAM fungi had contrasting effects on jarrah growth and
the positive growth response was only observed with
S. calospora, which had relatively higher AM colonization
than the other AM treatments. Nevertheless, the extent of root
colonization does not necessarily have a direct correlation
with positive growth and nutritional responses (Jakobsen
1995; Smith et al. 2004). It seems that the growth response

in AM–eucalypt symbioses is strongly dependent on the AM
fungus, the plant species and the experimental conditions. The
response of eucalypts to AM inoculation has been a matter of
controversy during the past decades due to inconsistent re-
sults. Gomez et al. (1987) observed no growth stimulation in
eight Eucalyptus species 3 months after inoculation with
30 AM isolates. Other studies, however, reported positive
effects of AM fungi on growth of different Eucalyptus species
(Adjoud et al. 1996; Chen et al. 2000). This study confirms the
inconsistency of growth response in AM–eucalypt symbioses
by showing that two different AM isolates have opposite
effects on jarrah.

In conclusion, we demonstrated that AM, ECM and the
A. occidentalis associations could induce tolerance to elevated
P in jarrah plants. The protective effect was not always ac-
companied by a significant reduction in shoot P concentration,
and it was independent of the type of fungal association and
the extent of root colonization. Moreover, A. occidentalis and
Scleroderma sp. formed more effective symbioses with jarrah
plants in terms of plant growth benefits and P nutrition under
P-deficient conditions. Finally, the findings suggest that pre-
inoculation of jarrah seedlings with symbiotic fungi could be a
potential strategy to reduce P toxicity symptoms in plants
grown on soils disturbed by over-fertilization.
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